ООО «Центр Экспертиз»

123060, Москва, ул.Маршала Рыбалко, А. 2, корп.6, подъезд 5, оф. 1204 Ten.: +7 (495) 540-49-96, www.center-expertiz.com OrPH 5137746166102 ИНН 7725811979 , КПП 772501001

Общество с ограниченной ответственностью «Центр Экспертиз»

Свидетельство об аккредитации на право проведения негосударственной экспертизы проектной документации № POCC RU.0001.610235 №0000333 от 13 февраля 2014 г.

Свидетельство об аккредитации на право проведения негосударственной экспертизы результатов инженерных изысканий № RA. RU. 610711 от 19 марта 2015 г.
"УТВЕРЖДАЮ"

ПОЛОЖИТЕЛЬНОЕ

 ЗАКЛЮЧЕНИЕ ЭКСПЕРТИЗЫ| 7 | 7 | - | 2 | - | 1 | - | 2 | - | 0 | 3 | 0 | 5 | - | 1 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Объект капитального строительства

«Многоквартирный 10 -этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская обл., г. Александров, ул. Жулева (1-ый этап строительства)».

Объект экспертизы

Проектная документация

1. Общие положения.

1.1. Основания для проведения экспертизы (перечень поданных документов, реквизиты договора о проведении экспертизы)

-Договор о проведении негосударственной экспертизы проектной документации № 493/1608-33/П от 05.08.2016 г. между ООО «Центр Экспертиз» и ООО ««Алдега».
-Заявление ООО «Алдега» на проведение экспертной оценки разделов проектной документации.

1.2. Сведения об объекте экспертизы с указанием вида и наименования

 рассматриваемой документации (материалов), разделов такой документацииОбъект негосударственной экспертизы проектная документация без сметы и результаты инженерных изысканий по объекту: «Многоквартирный 10 - этажный жилой дом со встроеннопристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)».

На рассмотрение представлена проектная документация без сметы и результаты инженерных изысканий в составе:

Номер	Обозначение	Наименование
1	2	3
1	10/2015.ЖД1-ПЗ	Пояснительная записка
2	10/2015.ЖД1-ПЗУ	Схема планировочной организации земельного участка
3	10/2015.ЖД1-АР	Архитектурные решения
4	10/2015.ЖД1-КЖ	Конструктивные и объемно-планировочные решения
5	10/2015.ЖД1-ИОС5	Сведения об инженерном оборудовании, о сетях инженерночческого обеспечения, перечень инженерно-технических приятий, содержание технологических решений
5.1	10/2015.ЖД1-ИОС5.1	Система электроснабжения
5.2	10/2015.ЖД1-ИОС5.2	Система водоснабжения
5.3	10/2015.ЖД1-ИОС5.3	Система водоотведения
5.4	10/2015.ЖД1-ИОС5.4	Отопление, вентиляция и кондиционирование воздуха. овые сети
5.4.1	10/2015.ЖД1-ОС5.4.1	Отопление, вентиляция
5.5	10/2015.ЖД1-ИОС5.5	Сети связи
5.6	10/2015.ЖД1-ИОС5.6	Система газоснабжения
6	10/2015.ЖД1-ПОС	Проект организации строительства
7	10/2015.ЖД1-ООС	Перечень мероприятий по охране окружающей среды
8	10/2015.ЖД1-ПБ	Мероприятия по обеспечению пожарной безопасности
9	10/2015.ЖД1-ОДИ	Мероприятия по обеспечению доступа инвалидов
10	10/2015.ЖД1-ТБЭ	Требования к обеспечению безопасной эксплуатации объекта гального строительства

Положительное заключение негосударственной экспертизы инженерных изысканий № 1-1-1-0089-15 от 17.12.2015 г., выданное ООО «ПрофЭксперт».

1.3 Идентификационные сведения об объекте капитального строительства, а также иные технико-экономические показатели объекта капитального строительства

Объект капитального строительства: «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)».

№	Показатели	Значение
	Всего квартир	72 шт.
	в т.ч. однокомнатных	36 шт.
	двухкомнатных	36 шт.
2.	Общая площадь здания	$4000,2 \mathrm{~m}^{2}$
	в том числе встроенно-пристроенные	$668,8 \mathrm{~m}^{2}$
3.	Жилая площадь	$1389.0 \mathrm{~m}^{2}$
4.	Общая площадь квартир	$3077.0 \mathrm{~m}^{2}$
5.	Площадь застройки	$1035,9 \mathrm{~m}^{2}$
6.	Объём строительный	$25781,95 \mathrm{~m}^{3}$
	вт.ч. встроенно-пристроенные	$5810,3 \mathrm{~m}^{3}$
7.	Количество этажей	10
8.	Количество жителей (принято в соответствии с проектом планировки территории. На одного человека принято 25 m 2$)$	108

1.4.Вид, функциональное назначение и характерные особенности объекта капитального строительства

Объект капитального строительства: «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)».

Многоквартирный жилой дом представляет собой 10 -этажное здание, расположенное по адресу: Владимирская обл., г. Александров, ул. Жулева.

Здание имеет 10 жилых этажей, 72 квартиры (1-, 2-комнатные), техническое подполье. На 1-м этаже расположены встроенно-пристроенные нежилые помещения.

Общий расчетный расход воды 31,68 м $3 /$ сут.
В проекте принято поквартирное отопление и автономное электрическое отопление помещений общего назначения.

Максимальный часовой расход газа 182,57 м3/ч.
Расчетная электрическая нагрузка на жилой дом 170,3 кВт.
Площадка жилого дома запроектирована в перспективно-развивающейся селитебной зоне города. Участок, отведенный под строительство дома, соответствует градостроительному плану.

Категория земель Ж-3 - застройка многоквартирными многоэтажными жилыми домами (до 10 этажей включительно).

1.5. Идентификационные сведения о лицах, осуществивших подготовку проектной документации и (или) выполнивших инженерные изыскания

Проектная документация: Общество с ограниченной ответственностью «ИнформТехСтрой».

Свидетельство о допуске к определённому виду или видам работ, которые оказывают влияние на безопасность объектов капитального строительства № СРО-П-081-6450941947-00613-4 от 13.08.2014 г., выдано Некоммерческим партнерством «Межрегиональное объединение проектировщиков (СРО)», протокол № 34/14 от 13.08.2014 г.
Юридический адрес: Российская Федерация, 410038, г. Саратов, ул. Загорная, д. 2 кв. 119.
Директор: Ермаков С.А.
Главный инженер проекта: Буров М.М.
ИНН: 6450941947
ОГРН: 110645001492

1.6. Идентификационные сведения о заявителе, застройщике, заказчике:

Заказчик-Застройщик-Заявитель: Общество с ограниченной ответственностью «Алдега»
ИНН 3301014926
КПІІ 330101001
Юридический адрес: 601655, Владимирская область, г. Александров, ул. Горького, д. 1 "A"
Почтовый адрес: 601655 , Владимирская область, г. Александров, ул. Горького, д. 1 «А». ОГРН 1033303206705
р/счет№ 40702810501001000105
в ОАО "О.К. Банк" г. Александров
БИК 041718737
Kopp. счет 30101810000000000737
e.mail: aldega@mail.ru

Директор: Кузнецов Д. А.

1.7. Сведения о документах, подтверждающих полномочия заявителя действовать от имени застройщика, заказчика (если заявитель не является застройщиком, заказчиком)

Не требуются.

1.8. Сведения об источниках финанспрования объекта капитального строительства

Собственные средства Заказчика.
1.9. Иные представленные по усмотрению заявителя сведения, необходимые для идентификации объекта капитального строительства, исполнителей работ по подготовке документации, заявителя, застройщика, технического заказчика.

Имеется заверение проектной организации, подписанное главным инженером проекта Буровым М.М. в том, что проектная документация разработана в соответствии с градостроительным планом земельного участка, градостроительным регламентом, заданием на проектирование, документами об использовании земельного участка для строительства, техническими регламентами, в том числе устанавливающими требования по обсспсчснию безопасной эксплуатации зданий, строений, сооружений и безопасного использования прилегающих к ним территорий, и с соблюдением технических условий.
2. Основания для выполнения инженерных изысканий, разработки проектной документации

2.1. Основания для вынолнения инженерных изысканий

Представлено положительное заключение негосударственной экспертизы инженерных изысканий № 1-1-1-0089-15 от 17.12.2015 г., выданное ООО «ПрофЭксперт».

2.2. Основания для разработки проектной документации

2.2.1. Сведевия о задании застройцика или технического заказчика на разработку проектной документации (если проектная документация разрабатывалась на основании договора)

-Техническое задание на разработку проектной документации строительства «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенньми нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)", утвержденное заказчиком.

2.3. Основания для разработки проектной документации

2.2.2. Сведения $о$ документации по планировке территории (градостроительный план земельного участка, проект планировки территории, проект межевания территории), о наличии разрешений на отклоненне от предельных параметров разрешенного строительства, реконструкции объектов капитального строительства -Градостроитељный план № RU 33501101-0000000000000035, утвержденный постановлением Главы МО г. Александров № 570 от 16.10 .2013 г. (кадастровый номер земельного участка 33:17:000702:670).

2.2.3. Сведения о технических условиях подключения объекта капитального стронтельства к сетям инженерно-технического обеспечения

-газоснабжение по ТУ № 242/314/3;
-водоснабжение и водотведение по ТУ № 790 от 08 февраля 2016 г., выданные 000 «Александров Водоканал»;
-электроснабжение по ТУ № 156 от 26 августа 2015 г., выданные МУП «Александровэлектросеть»;

- телефонизация по ТУ № Св-2/16 от 27.01.2016 г., выданные ООО «Связист».

2.2.4. Иная представленная по усмотрению заявителя информация об основаниях, исходных данных для проектирования

Не требуется

3. Описание рассмотренной документации (материалов)

3.1. Сведения о выполненных видах инженерных изысканий

Представлено положительное заключение негосударственной экспертизы инженерных изысканий № 1-1-1-0089-15 от 17.12.2015 г., выданное ООО «ПрофЭксперт».

3.2. Описание технической части проектной документадии

3.2.1. Перечень рассмотренных разделов и подразделов проектной документации.

Номер тома	Обозначение	Наименование
1	2	3
1	10/2015.ЖД1-ПЗ	Пояснительная записка
2	10/2015.ЖД1-ПЗУ	Схема планировочной организации земельного участка
3	10/2015.ЖДІ-АР	Архитектурные решения
4	10/2015.ЖД1-КЖ	Конструктивные и объемно-планировочные решения
5	10/2015.ЖД1-ИОС5	Сведения об инженерном оборудовании, о сетях инженерноического обеспечения, перечень инженерно-технических приятий, содержание технологических решений
5.1	10/2015.ЖД1-ИОС5.1	Система электроснабжения
5.2	10/2015.ЖД1-ИОС5.2	Система водоснабжения
5.3	10/2015.ЖД1-ИОС5.3	Система водоотведения
5.4	10/2015.ЖД1-ИОС5.4	Отопление, вентиляция и кондиционирование воздуха. овые сети
5.4.1	$\begin{aligned} & 10 / 2015 . Ж Д 1- \\ & 5.4 .1 \end{aligned}$	Отопление, вентиляция
5.5	10/2015.ЖД1-ИОС5.5	Сети связи
5.6	102015.ЖД1-ИОС5.6	Система газоснабжения
6	10/2015.ЖД1-ПОС	Проект организации строительства
7	10/2015.ЖД1-ООС	Перечень мероприятий по охране окружающей среды
8	10/2015.ЖД1-ІІБ	Мероприятия по обеспечению пожарной безопасности
9	10/2015.ЖД1-ОДИ	Мероприятия по обеспечению доступа инвалидов
10	10/2015.ЖД1-ТБЭ	Требования к обеспечению безопасной эксплуатации объекта гального строительства

3.2.2. Описанне основных решений (мероприятий) по каждому из рассмотренных разделов

3.2.2.1. Пояснительная записка

В проекте представлена пояснительная записка с исходными данными для проектирования, в том числе технические условия.

В пояснительной записке приведены состав проекта, решение о разработке проектной документации, исходные данные и условия для проектирования, сведения о потребности объекта капитального строительства в топливе, воде и электрической энергии, техникоэкономические показатели.

Представлено заверение проектной организации о том, что проектная документация разработана в соответствии с градостроительным планом земельного участка, заданием на проектирование, градостроительным регламентом, техническими регламентами, в том числе устанавливающими требования по обеспечению безопасной эксплуатации зданий,

строений, сооружений и безопасного использования прилегающих к ним территорий, и с соблюдением технических условий.

3.2.2.2 Схема планировочной организации земельного участка

Объект капитального строительства: многоэтажный многоквартирный жилой дом со встроено-пристроенными помещениями расположен по адресу: Владимирская область, южная окраина г. Александров, в строящемся микрорайоне «Южный», ул. Жулева.

Размещение объекта выполнено в соответствии с градостроительным планом
ГПЗУ №RU33501101-0000000000000035, утвержденным на участке с кадастровым номером $33: 17: 000702: 670$, площадью $20337 \mathrm{kв}$ м, на месте допустимого размещения объекта капитального строительства. Принятая этажность 10 этажей установлена Решением №68 от 15.08 .2014 г. Советом народных депутатов г. Александров, Владимирская область «О внесении изменений и дополнений в Правила землепользования и застройки г. Александрова, утвержденные решением Советом народных депутатов 15.12 .2009 г. №122\%.

Основной подъезд к проектируемому жилому дому организован с ул. Жулева.
В настоящее время участок свободен от застройки и подземных коммуникаций, в северной части площадки находится ленточньй фундамент на глубине 0,6 м от поверхности земли, в южной части участка деревья и кустарники.

Планировочная организация земельного участка выполнена в соответствии с градостроительным планом земельного участка, в соответствии с основными исходными данными на проектирование и нормативными требованиями.

Застройка микрорайона предполагается десятиэтажными жилыми домами со встроеннопристроенными нежилыми помещениями. На отведенном участке запроектированы многоэтажные жилые дома с поэтапной очередностью строительства, 1-й этап строительства 10 -ти этажный жилой дом со встроенно-пристроенными нежилыми помещениями, трансформаторная подстанция и пристроенная к жилому дому теплогенераторная.

Жилой дом - прямоугольный в плане, состоит из двух подъездов, количество этажей в жилом доме: 10 , в том числе надземных этажей: 10 . Под зданием запроектировано техническое подполье. На уровне первого этажа предусмотрена пристроенная часть размером $41,05 \times 8,87$ м в осях. Общие габариты здания в крайних осях $41,05 \times 21,74$ м.

Коэффициент застройки участка 1-го этапа строительства составляет $22,66 \%$.
В жилой части дома запроектировано 72 квартиры.
Во встроено-пристроенной части располагается магазин непродовольственных товаров.
Загрузка магазина осуществляется в загрузочные помещения с торцов жилого дома, не имеющих оконных проемов.

Вокруг здания устроены проезды для пожарной техники шириной 5,5 метров на расстоянии 5-8 метров от окон здания.

Кроме жилого дома на участке запроектированы: детская плоцадка, площадка отдыха, физкультурная площадка, площадка для мусороконтейнеров ТБО. Расстояние от площадки с мусороконтейнерами до окон жилого дома и территории детской площадки соответствует нормативным требованиям.

На территории проектируемого жилого дома располагаются парковочные места для автомобилей. Для жителей жилого дома и посетителей магазина предусмотрены следующие места для временного хранения автомобилей:

для жителей жилого дома:

> - открытые гостевые и временные автостоянки на 19 машино-мест;
> для посетителей магазина:
> - открыгтые гостевые автостоянки на 27 машино-мест.

Общее количество мест на автостоянках 46. Для автомобилей МГН предусмотрено 10% мест на автостоянках. Расстояние от открытых автостоянок до проектируемого жилого дома и существующих зданий соответствуют нормативным требованиям.

За относительную отметку 0,000 жилого дома принят уровень чистого пола первого этажа, что соответствует абсолютной отметке 180,60 . Система высот балтийская.

План организации рельефа решен методом проектных отметок, с учетом строительных требований и условий стока поверхностных вод с участка. Существующий рельеф участка с перепадом отметок от 179,88 до 180,64 . Проектируемый общий уклон имеет юго-восточное направление. Отвод поверхностных вод с участка решен открытым способом на прилегающую незастроенную территорию. Проектные уклоны по проездам приняты: продольные от 0,4 до 0,5 $\%$, поперечные - 2%.

Все квартиры жилого дома обеспечены нормативной инсоляцией, продолжительностью не менее 2 ч.

Территория жилого дома благоустраивается и озеленяется. Покрытие пешеходных тротуаров, отмостки и площадки для отдыха взрослого населения запроектированы из литого мелкозернистого асфальтобетона, проезды из горячего плотного мелкозернистого асфальтобетона, детская и физкультурная площадки с дерновым покрытием. В местах пересечения тротуара с проезжей частью дороги, в пределах пешеходной зоны, предусмотрены пандусы. Перепад высот бордюра в местах съезда на проезжую часть не превышает $0,015 \mathrm{~m}$. Предусмотрено наружное освещение территории. На площадках предусмотрена установка малых архитектурных форм.

Вся территория, свободная от застройки и покрытий, максимально озеленяется посевом газонной травы и высадкой деревьев. Процент озеленения участка принят $15,02 \%$.

Технико-экономические показатели по участку (в границах 1-го этапа строительства):

- Плоцадь участка - 4740,00 м 2
- Площадь застройки - 1074,00 м 2
- Площадь озеленения - 712,00 м ${ }^{2}$
- Площадь покрытий - 2954,00 м ${ }^{2}$

3.2.2.3 Архитектурнье решекия.

Жилой дом запроектирован двухподъездным. Здание - прямоугольное в плане, количество этажей в жилом доме: 10 , в том числе надземных этажей: 10. Под зданием запроектировано техническое подполье. Габариты здания в крайних осях $41,05 \times 21,74 \mathrm{~m}$. Наибольшая высота здания от отметки 0,000 до верхней отметки парапета кровли: $33,10 \mathrm{~m}$.

В жилом доме на 2-10 этажах запроектировано 72 квартиры, из них однокомнатных - 36, двухкомнатных - 36 . Количество жильцов дома - 108 человек.

На жилом этаже в каждом подъезде расположено по 4 квартиры, выходящих в коридоры, ведущие в лестничные клетки Л. Техподполье предусмотрено высотой $1,8 \mathrm{~m}$, предназначено для расположения инженерных коммуникаций.

В каждом подъезде жилого дома предусмотрено устройство двух лифтов: один грузоподъемностью 400 kr , другой грузоподъемностью 630 кг. Лифт грузоподъемностью 630 kr имеет габариты кабины $2,1 \times 1,1$ м и может использоваться для транспортирования инвалида на кресле-коляске.

Высота жилых этажей 2,8 м (2,5 м в свету).
На первом этаже жилого дома располагается предприятие обслуживания населения: непродовольственный магазин, торговой площадью $555,00 \mathrm{~m}^{2}$, вход органнзован с северного фасада здания, подъезд со стороны ул. Жулева, загрузка осуществляется с торцов жилого дома, не имеющего оконных проемов. Высота торгового зала $-3,0$ м, высота вспомогательных помещений $-3,3 \mathrm{~m}$;

К наружной стене жилого дома на уровне первого этажа пристроено помещение теплогенераторной с самостоятельным входом.

Здание запроектировано без чердака.
Кровля здания - плоская с системой внутренних водостоков.
Вход в жилой дом и помещения общественного назначения организованы через входные группы помещений, доступных для нужд МГН. Предусматривается устройство наружных пандусов и внутренних подъемников для МГН при входах в здание, что обеспечивает возможность доступа инвалидов на уровень первого этажа.

Выходы на кровлю запроектированы по маршевым лестницам с устройством площадок перед выходами.

Во всех квартирах жилого дома выше первого этажа предусмотрено устройство лоджий.
Во всех санузлах, ванных комнатах и кухнях квартир запроектирован необходимый набор сантехнических приборов и оборудования. Вентиляция запроектирована через вентиляционные каналы во внутренних стенах здания.

Все помещения квартир с постоянным пребыванием людей запроектированы с естественным освещением через окна.

Проектом предусматривается комплекс мероприятий, обеспечиваюпих выполнение следующих нормативных требований по защите от шума:

- в части межэтажных перекрытий жилых зданий изоляция воздушного шума $\mathrm{Rw} \geq 52$ дБ, приведенный уровень ударного пума $\operatorname{Lnw} \leq 60$ дБ, в части перегородок между квартирами изоляция воздушного шума $\mathrm{Rw} \geq 52$ дБ;

Наружные стены здания запроектированы из керамического поризованного кирпича КМ$\mathrm{p} 250 \times 12 \times 140 / 2.1 \mathrm{H} / 150 / 1,0 / 50$ толщиной 510 мм с наружным слоем из облицовочного кирпича.

Перекрытие над подвалом выполнено с утеплением базальтовыми плитами ROCKWOOL Флор Баттс плотностью $125 \mathrm{kr} / \mathrm{m}^{3}$ толщиной 25 мм, покрытие над 10 этажом выполнено с утеплением базальтовыми плитами ROCKWOOL Руф Баттс плотностью 160 кг/м ${ }^{3}$ толщиной 200 mm .

Наружная отделка здания:

- наружные стены - лицевой силикатный и керамический кирпич и облицовка козырька магазина алюминиевьм композитным материалом красного цвета;
- стены ниже отм. 0.000 - фасадная керамическая плитка;
- заполнение оконных проемов - оконные блоки из металлопластика белого цвета с двойным стеклопакетом;
- ограждение лоджий - из керамического кирпича;
- покрытие ступеней и площадок входных групп - вибропрессованная бетонная тротуарная плитка серого цвета.

Пути эвакуации.
Эвакуация людей с жилых этажей здания предусмотрена по общим внеквартирным коридорам на лестницы, расположенные в лестничных клетках Лl. Все лестничные клетки имеют выход наружу. Во встроенных помещениях общественного назначения предусмотрено устройство отдельных эвакуационных выходов. Предусмотрено два выхода из технического подполья непосредственно наружу.

Пожарные отсеки.
В здании предусмотрен один пожарньй отсек.
Степень огнестойкости здания - II.
Класс конструктивной пожарной опасности - С 0 .
Класс пожарной безопасности строительньгх конструкций - К0.
Класс функциональной пожарной опасности жилого дома - Ф1.3.

Класс функциональной пожарной опасности встроенных помещений общественного назначения - Ф3.1.

3.2.2.4. Конструктивные и объемно-плланировочные решения

По климатическому районированию район нового строительства располагается в подрайоне II B (рис. А1 СП 131.13330.2012). Среднегодовая температура воздуха $+3,4^{\circ} \mathrm{C}$. Январь самый холодный месяц со среднемесячной температурой $-12^{\circ} \mathrm{C}$, июль самый теплый месяц со среднемесячной температурой $+18^{\circ} \mathrm{C}$. Предельно высокие температуры отмечаются очень редко. Глубина промерзания почв достигает 0,8 м, редко на ровных и открытых от снежного покрова участках до $1,4 \mathrm{~m}$. Нормативная глубина промерзания сутлинистых грунтов составляет - 1,4 м, песчаных грунтов - 1,8 м.

Район нового строительства согласно 20.13330-2011 «Нагрузки и воздействия» расположен:

- по весу снегового покрова - III (СП 20.13330-2011 Прил. Ж, карта 1);
- по давлению ветра - I (СП 20.13330-2011 Прил. Ж, карта 3);

Расчётное значение веса снегового покрова Sg на 1 m 2 горизонтальной поверхности земли составляет - 180 кг ($1,8 \mathrm{\kappa} П$ а) .

Нормативное значение ветрового давления на 1 м2 по данным таблицы 11.1 (СП 20.13330-2011 «Нагрузки и воздействия») для I района - 23 кг (0,23 кПа).

Нагрузки, принятые при расчете конструкций следующие:

- временная на перехрытия жильх помещений (нормативная) - $150 \mathrm{kr} /$ кв.м.;
- временная на перекрытия нежилых помещений (нормативная) - 400кг/кв.м.;
- собственный вес конструкдий.

Согласно техническому отчету инженерно-геологических изысканий, выполненных ООО "ПРОМСЕРВИС" в августе-октябре 2014г, отведенный участок под строительство, расположен ва южной окраине города Александров, рельеф площадки в основном ровный. Абсолютные отметки поверхности изменяются от 179,25 до 180,50 м.. Площадка имеет уклон с севера на юг.

В геоморфологическом отношении участок находится в Клинско-Дмитровской моренноэрозионной возвьшенности с группами крупных холмисто-грядовых форм окраинной зоны Московского оледенения. Участок проектируемого строительства расположен в пределах одного геоморфологического элемента, на водораздельном склоне пологоволнистой равнины на правом берегу р. Серой.

По степени сейсмической опасности А (10%) - массовое строительство - Владимирская область не входит в перечень сейсмических районов СНиПІ ІІ-7-81*.

В геологическом строении исследуемого участка принимают участие:
ИГЭ-1 - Почвенно-растительньй слой - суглинистый, серый, с корнями растений, мощностью до $0,3 \mathrm{~m}$. Местами снят.

ИГЭ-2 - Суглинок пылеватый, полутвердый, незасоленный, малой степени водонасыщения, с естественной влажностью - $21,5 \%$, числом пластичности - $16,08 \%$, плотностью грунта $-2,01$ г/см ${ }^{3}$, показателем текучести $-0,20$, коэффициентом пористости 0,65 , степенью влажности $-0,92$. Модуль деформации - 17 МПа, угол внутреннего трения 20°, удельное сцепление - 35,5 кПа. Мощность $0,9-2,0$ м.

ИГЭ-3а - Среднечетвертичные флювиогляциальные отложения представлены песками крупными, ржаво-коричневыми, неоднородными, малой степени водонасыщения, с включением до 15% гравия и гальки окварцованных пород; песками средней крупности и мелкими желто-коричневыми, однородными, малой степени водонасыщения, с редким включением гравия и гальки с естественной влажностью - $5,8 \%$, плотностью частиц грунта 2,65 г/см ${ }^{3}$, с коэффициентом пористости - 0,63 , степенью влажности $-0,24$, плотностью

грунта $-1,72$ г/см ${ }^{3}$. Модуль деформации -27 МПа, угол внутреннего трения -34°. Вскрыттая моцность отложений $0,6-3,1$ м.

ИГЭ-3б - Песок крупный, плотный, неоднородный, малой степени водонасыщения, с естественной влажностью $-5,8 \%$, плотностью частиц грунта $-2,65$ г/см ${ }^{3}$, с коэффициентом пористости - 0,535 , степенью влажности $-0,29$, плотностью грунта $-1,83$ г/см ${ }^{3}$. Модуль деформации - 37 M Па, угол внутреннего трения - 37°. Вскрытая мощность отложений $0,5-$ 1,1m.

ИГЭ-4а - Песок средней крупности средней плотности, однородный, малой степени водонасыщения, с естественной влажностью $-4,6 \%$, плотностью частиц грунта $-2,66{ }_{\mathrm{r}} / \mathrm{cm}^{3}$, с коэффициентом пористости $-0,66$, степенью влажности - 0,18 , плотностью грунта $-1,68$ г/см ${ }^{3}$. Модуль деформации -25 MIIa , угол внутреннего трения -32°. Вскрытая мощность отложений $0,7-3,1 \mathrm{~m}$.

ИГЭ-4б - Песок средней крупности плотный, однородный, малой степени водонасьппения, с естественной влажностью $-4,6 \%$, плотностью частиц грунта $-2,66$ г/см ${ }^{3}$, с коэффициентом пористости $-0,52$, степенью влажности $-0,23$, плотностью грунта $-1,83$ г/см ${ }^{3}$. Модуль деформации - 40 M Па, угол внутреннего трения -36°, удельное сцепление $1,4 к$ Па. Вскрытая мощность отложений $0,4-12,5$ м.

ИГЭ-5 - Песок мелкий плотный, однородный, малой степени водонасыщения, с естественной влажностью $-5,1 \%$, плотностью частиц грунта $-2,66$ г/см ${ }^{3}$, с коэффициентом пористости $-0,535$, степенью влажности $-0,25$, плотностью грунта $-1,82$ г/см ${ }^{3}$. Модуль деформации -41 МПа, утол внутреннего трения -37°. удельное сцепление $-4,6 \kappa П а . ~ В с к р ы т а я ~$ мощность отложений $1,0-9,5$ м.

На площадке изысканий водоносные горизонты не вскрыты. Но с учетом геологолитологического строения участка изысканий, в покровных суглинках в период строительства и последующей эксплуатации объекта возможно появление грунтовых вод типа "верховодки". Грунтовые воды типа "верховодки" носят локальный, временный характер и по отношению к бетону подземные воды неагрессивны.

Проявлений опасных инженерно-геологических процессов и явлений в пределах площадки изысканий не обнаружено. В целом инженерно-геологические условия участка изысканий согласно СП 11-105-95 относятся к I (простой) категории сложности.

Проектируемое здание условно разделено на два строительных объема. Объем нежилых общественных помещений - одноэтажный объем и объем жилого дома, жилых этажей -9 . Между собой $10-$-и этажный дом и одноэтажная пристройка разделены деформационным ниом.

Здание жилого 10 -и этажного дома со встроено-пристроенными нежилыми помещениями первого этажа, прямоугольное в плане с габаритными размерами в осях $21,74 * 40,5$ м. Высота 1 -го этажа - 3,6 м. Высота типового этажа - 2,8 м.

Здание кирпичное с продольными и поперечным несущими стенами, и сборным железобетонным перекрытием. Вертикальная связь помещений жилой части осуществляется по лестнице и двум лифтам, грузоподъемностью - 630 кг и 400 кг. Вход в жилую часть здания (на отметке 0,000) организован со двора, через тамбур и вестибюль, который выполняет функцию второго входа.

Конструктивная схема здания принята с продольными и поперечными несуцими стенами из кирпича, которые в сочетании со сборными железобетонными перекрытиями образуют пространственную жесткую схему, воспринимающую горизонтальные и вертикальные нагрузки. Подземная часть здания 10 -и этажного дома представлена ленточными фундаментами на естественном основании из сборньгх железобетонных элементов ФЛ по ГОСТ 13580-85. Подземная часть одноэтажной пристройки состоит из фундаментных бетонных блоков марки ФБС по ГОСТ 13579-78*. Деформационный шов проходит по крайней стене 10 -и этажного дома (ось "Б").

Основанием фундаментов служат ИГЭ-3б - пески крупные, средней плотности, однородные, малой степени водонасыщения со следующими расчетными характеристиками:

- $\mathrm{pu}=1,83 \mathrm{r} / \mathrm{cm}^{3}$;
- $\varphi_{\mathrm{II}}=37^{\circ}$;
$-\mathrm{C}_{\text {II }}=0,0 \mathrm{~K} \Pi$.
Модуль деформации $\mathrm{E}=37 \mathrm{M}$ Па.
Среднее расчетное давление под подошвой составляет $-3,7 \mathrm{\kappa г} / \mathrm{cm}^{2}$.
Над фундаментными подушками и под плитами перекрытий на отметках $-2,100$ и $-0,900 \mathrm{~m}$ соответственно, выполняются арматурные пояса из арматурной стали Ø10 класса А300 (продольная) и Ø4 класса B500 (поперечная) с шагом $400 \mathrm{mм}$. Стыковка продольных арматурных стержней выполняется путем перепуска на 15 - 20 см и сваривается электродуговой сваркой фланговым швом. Арматурные стержни выкладываются в слое густого цементного раствора марки М100 с толщиной шва 30мм. Арматурный пояс выполняется по всему периметру ленточного фундамента, в местах деформационного шва пояс прерывается.

Согласно рекомендациям, п. $7.20,7.21$ "Пособия к СНиПІ II-22-81" арматурные пояса выполняются под плитами перекрытия 5-го, 7-го и 9-го этажей и приняты как дополнительная мера для предотвращения возникновения усадочных трещин в кладке из силикатного и щелевого керамического кирнича.

Внутренние несущие и самонесущие стены с отметки пола 1-го этажа запроектированы из силикатного полнотелого полуторного кирпича по ГОСТ 379-95.

Наружные стены (кроме лоджий) двухслойные: внутренний (несущий) слой - кирпичная кладка из силикатного полуторного кирпича $\mathrm{M}-150$ на ц/п растворе $\mathrm{M}-100$, наружный слой из керамического блока POROTHERM ВИНЕРБЕРГЕР M-150 на ц/п растворе M-100. Перекрытия и покрытия сборные жб многопустотные плиты.

Перемычки - сборные ж/б по серии 1.038.1-1 вып.4.
Прогоны и опорные подушки - по серии 1.225-2 вып.11.
Перекрытие - сборные ж/б многопустотные плиты по серии 1.141-1 вып.63; 1.241-1 вып. 27 и монолитные участки.

Кровля плоская, внутренний водоотвод.
Стены подвала - бетонные блоки по ГОСТ 13579-78*, частично кирпичная кладка из полнотелого керамического кирпича по ГОСТ $530-2007$ марки М-150 на растворе М-100.

Вертикальные бетонные поверхности, также все кирпичные поверхности, соприкасающиеся с грунтом, покрываются оклеечной гидроизоляцией по системе «Технониколь ТН-Фундамент Дренаж».

По периметру здания с наружной стороны выполнена асфальтобетонная отмостка шириной 1.0 м с уклоном 3% от здания.

Обратную засыпку пазух фундаментов выполнить только после монтажа плит перекрытий цокольного этажа и проливки швов цементным раствором марки М200. Засыпку произвести непучинистым, непросадочным грунтом с послойным трамбованием до достижения $\gamma \tau \mathrm{p}=1,45 \mathrm{~T} / \mathrm{m}^{3}$. Толщина каждого трамбованого слоя не более $200 \mathrm{Mм}$.

Требования теплозащитных характеристик стен, покрытия и окон жилой части здания и цокольного этажа соблюдаются. Оконные блоки - металлопластик, выполненные по современным технологиям, с двойным стеклопакетом, имеют хорошую тепло- и звукоизоляцию. Наружные каменные фасады здания запроектированы из керамического поризованного кирпича POROTHERM ВИНЕРБЕРГЕР М-150 на ц/п растворе М-100, который обеспечивает хорошую тепло- и звукоизоляцию.

[^0]
3.2.2.5.1.Система электроснабжения

Проект разработан на основании ТУ №156 от 26 августа 2015г. выданных МУП «Александровэлектросеть».

В отношении обеспечения надежности и бесперебойности электроснабжения электроприемники проектируемого объекта относятся к первой и ко второй категории электроснабжения.

К электроприемникам первой категории относятся:

- аварийное освещение;
- лифтовое электрооборудование.

К электроприемникам второй категории относятся: питающие стояки квартир.
Расчетная мощность электроприемников жилого дома составляет 140,1 кВт, расчетная мощность встроенных помещений составляют 30,24 кВт.

Электроснабжение жилого дома осуществляется от проектируемой трансформаторной подстанции 2 -мя кабельными линиями ПВБбШвнг-1 сечением 4×150 кв. мм, проложенными в земляной траншее.

В качестве вводно-распределительного устройства принят шкаф напольного исполнения тида ВРУ-8503Э-В-400-1-IP30. Учет расхода электроэнергии предусмотрен на BPУ.

Питающие стояки квартир в проекте приняты кабелем марки ВВГнг(A)LS - 1 к \mathbf{B} сечением 5×35. Питающие кабели силового электрооборудования (лифтовое электрооборудование) в проекте приняты кабелем BBГнг(A)FRLS - 1 кB сечением 5×35 мм2.

Внутренние распределительные сети выполнены кабелем марки ВВГнг(A)LS - 1 кB сечением $3 \times 1,5,3 \times 2,5,3 \times 4,3 \times 16$ мм2 .

Система заземления принята TN-C-S. Для защиты при косвенном прикосновении выполняется система уравнивания потенциалов.

Молниезапита
Жилой дом относится к обычным объектам и подлежит молниезаците по III уровню.
Молниеприёмник располагается на кровле в виде сетки, с шагом не более $10 \times 10 \mathrm{~m}$ (в соответствии с СО 153-34.21.122-2003). Выступающие над крьшей металлические элементы (трубы, вентиляционные устройства) присоединяются к молниеприёмной сетке.

От молниеприемника предусматриваются опуски (токоотводы) к наружному заземляющему устройству. Токоотводы проложены к заземляющему устройству не менее чем через 20 m и вьтолнены круглым проводом диаметром 8 мм на внешней стороне кирпичной стены.

Токоотводы располагаются на расстоянии не менее 3 м от входов в здание. Заземляющее устройство предусматривается выполнить горизонтальными и вертикальными заземлителями. Вертикальные заземлители вьполнены из угловой стали $50 \times 50 \times 5 \mathrm{mм}$, а горизонтальные из полосовой стали 5×40 мм. Глубина прокладки горизонтальных заземлителей должна быть не менее 0,5 м от поверхности земли.

Электроосвещение
Данным проектом предусмотрена система общего освещения (рабочего и аварийного видов освещения).

Напряжение распределительной сети $-380 / 220 \mathrm{~B}$, ламп рабочего и аварийного освещения 220 B , переносного - 42B. Светильники аварийного освещения выделяются из числа светильников общего освещения, с видимой стороны светильников аварийного освещения

нанесенной красной несмываемой краской буквы 《А》 высотой 100 мм. Светильники аварийного освещения получают питание от вводно-распределительного устройства панели ABP по отдельным распределительным линиям кабелем ВВГнг(A)-FRLS, а рабочего освещения получают питание от распределительных панелей вводно-распределительного щита.

Для питания переносньх светильников в помещениях с повышенной опасностью предусматривается напряжение 42B. Питание переносных светильников производится от понижающих разделяющих трансформаторов, установленных в помещениях электрощитовой, машинного отделения, ИТП.

3.2.2.5.2.Система водоснабжкения

Согласно технических условий, источником водоснабжения жилого дома является городской водовод 0225 мм по ул. Жулёва. Давление в точке подключения составляет 0,20 Мпа. Городской водопровод проложен из ПВХ труб.

Потребный напор холодной воды рассчитан для возможности подачи воды на 10 -ый этаж здания и составляет 40,00 , требуемый расход холодной воды (общий) на хозпитьевые противопожарные нужды составляет 7,41 л/с.

Наружное пожаротушение осуществляется из существуюіцих и проектируемого пожарных гидрантов на городских водопроводных сетях. Расположение пожарных гидрантов не далее 200 m от проектируемого дома.

Расход воды на наружное пожаротушение составляет $15 \pi /$ с и принят по СП 8.13130 .2009 табл. 2 исходя из назначения здания и строительного объема. Приготовление горячей воды для жилого дома предусматривается индивидуально в каждой квартире с помощью газовык котлов.

Наружная сеть водопровода от места врезки в кольцевой внутриплощадочный водопровод до здания жилого дома запроектирована из полиэтиленовых труб $090 \mathrm{x} 5,1$ ПЭ100 SDR17 (питьевая) ГОСТ18599-2001. Внутриплощадочные сети прокладываются на глубине $1,80-2,0$ м из полиэтиленовых труб 0 160x9,5 ПЭ100 SDR17 (питьевая) ГОСТ18599-2001 Трубопровод укладывается на грунтовое плоское основание с песчаной подготовкой толщиной $100 \mathrm{mм}$. На площадке проектирования, по результатам инженерногеологических изысканий водоносные горизонты не вскрыты. В точке подключения к городскому водопроводу устраивается колодец из сборных железобетонных элементов 0 1500 мм ГОСТ $8020-90$ (т.пр 901-09-11.84) для установки запорной арматуры. Элементы колодца покрыты антикоррозийной гидроизоляцией. Колодец оборудован люком с крышкой и ходовыми скобами.

В месте прохода полиэтиленовой трубы через стенку колодца устанавливается полиэтиленовая гильза. Длина гильзы должна превышать толшину стенки колодца на 3050 мм. Свободное пространство гильзы задслывастся паклей, пропитанной в жидком полиизобутилене и асбестоцементным раствором.

После монтажа водопровод подвергается гидравлическому испытанию давлением 0,68 Мпа при не присыпанном землей трубопроводе. Магистральные трубопроводы в техподполье изолируются согласно спецификации.

Расход воды на наружное пожаротушение принимается по СП 8.13130 .2009 табл.2, исходя из назначения здания, его объема, числа этажей, класса функциональной безопасности и составляет $15 \mathrm{\pi} / \mathbf{c}$.

Внутреннее пожаротушение согласно табл. 1 СП 10.13130 .2009 не предусматривается. Согласно СПІ 89.13330 .2012 предусматривается внутренне пожаротушение пристроенной теплогераторной $2 \times 2,5 \mathrm{\pi} / \mathrm{c}$. Пожаротушение запроектировано из пожарных кранов диаметром 50 мм. Пожарные краны установлены на

высоте 1,35 м нал полом. Каждый пожарный кран снабжен пожарным рукавом длиной 20 м и пожарным стволом.

Пожарные краны устанавливаются во встраиваемых пожарньхх шкафах, в которьх предусмотрено по два ручных огнетушителя.

Для внутриквартирного пожаротушения предусматривается комплектное устройство первичного пожаротупения (ПУВП) производства НПО «Пульс», состоящее из запорного клапана, шланга пожарного $1=15,00$ м и распылителя. Всё оборудование смонтировано в шкафчике, снабженном соответствующей наклей-

Расчетные расходы холодной и горячей воды на хозяйственно-питъевые нужды приведены в таблице 1 .

Полив прилегающей территории производится из поливочньх кранов Dy25MM, расположенных на внутреннем водопроводе в нишах на фасаде здания с расстоянием между ними по периметру $60-70$ м.

Гарантированное давление в сети городского водопровода составляет 20 м.вод.ст. который достаточен для обеспечения потребного напора для целей пожаротушения.

Для создание необходимого напора для нужд хоз.- питьевого водоснабжения предусматривается насосная станция повышения давления с частотным регулятором фирмы Grundfos Hydro MPC-E 3 CRE3-5 $50 / 60 \mathrm{~Hz}$ RUS (2 рабочих, 1 резервный) производительностью $8,68 \mathrm{~m} / ч$, напор 20 м.вод.ст., мощностью 0,75 Квт, установленная в подвале дома. Насосная станция относиться ко 2 категории по электроснабжению. В повысительной насосной станции предусмотрена установка мембранного бака, предназначенного для уменьшения гидроударов в системе и числа включений насосной установки.

Работает мембранный бак по принципу водонапорной башни. Насосная станция работает в автоматическом режиме. На всасывающих трубопроводах устанавливается запорная арматура, на напорных- обратные клапаны и запорная арматура.

Проектом предусматривается зонная система водоснабжения. Потребный напор для противопожарного водопотребления обеспечивается городской сетью. К нижней зоны относятся противопожарное водоснабжение помещение теплогенераторной. Верхняя зона - основное здание.

Внутренние системы холодного запроектированы из стальных водогазопроводных оцинкованньх труб ГОСТ 3262-75 (помещения техподполья и стояки) и полипропиленовых труб ПП РN10 20x3,4 (питьевая) производства ООО «Пластик» (т.м. РВК) в санузлах. Прокладка трубопроводов осуществляется под потолками помещений подвала и над полом в санузлах.

Стальные трубопроводы окрашиваются масляной краской в два слоя, трубопроводы горячей воды покрыты трубным изоляционным материалом «Термо- флекс» J-13MM.

Мероприятия по резервированию питьевой воды не требуются, т.к здание находится в районе обслуживаемом центральньгми водопроводными сетями города.

Для учета расхода холодной воды на вводе водопровода в здание запроектирован водомерный узел с водосчетчиком калибра 40 .

На основании выше изложенного в водомерном узле к установке принимается счетчик Ду. сч $40 \mathrm{mм}$. . На обводной линии водомерного узла установлена задвижка, опломбированная в закрытом состоянии. Водомерный узел установлен в техподполье и отгорожен от остальных помещений сетчатым ограждением. Так как счетчик воды не рассчитан на пропуск противопожарного расхода воды, то предусматривается устройство обводной линии, на которой устанавливается задвижка, опломбированная в закрытом положении. Задвижка для пропуска противопожарного расхода воды предусматривается с электроприводом марки $30 ч 906$ рр диаметром 159 мм .

Обводная линия рассчитана на максимальный (с учетом противопожарного) расход воды.

Задвижка с электроприводом открывается автоматически от кнопок, установленньх у пожарньх кранов.

Для учета расходов воды в квартирах установлены приборы учета - для холодной воды счетчики СКВ-2/10.

Включение повысительной насосной установки фирмы Grundfos Hydro MPC-E 3 CRE3-5 $50 / 60 \mathrm{~Hz}$ RUS (2 рабочих, 1 резервный) производительностью $8,68 \mathrm{~m} / ч$, напор 20 м.вод.ст., мощностью 0,75 Квт, производится автоматически по мере необходимости повышения напора в сети и обеспечивает потребный напор.

Насосная установка укомплектована контрольно-измерительньгми приборами и системой автоматического управления.

Система автоматики полностью обеспечивает безопасную работу установки и дополнительной автоматизации не требует.

К мероприятиям по рациональному использованию воды и ее экономии относится установка приборов учета воды (водомеров) и использование смывных бачков «Компакт».

Описание системы горячего водоснабжения.
Приготовление горячей воды для жилого дома предусматривается индивидуально в каждой квартире с помощью газовых котлов.

Внутренние системы горячего водоснабжения запроектированы из полипропиленовых труб ПП РN20 20х3,4 (питьевая) производства ООО «Пластик».

Наименование системы	$\begin{aligned} & \text { Потребный напор } \\ & \text { на вводе, м } \end{aligned}$	Расчетный расход воды				Установочн. мощность эл. двита-- телей, кBт	Расход тепла, ккал/час
		$\mathrm{m}^{3 / \mathrm{cyT}}$	$\mathrm{M}^{3 / 4}$	π / c	$\begin{gathered} \text { При } \\ \text { пожаре } \\ \pi / \mathrm{c} \end{gathered}$		
В1~водопровод хоз.-питъевой, том числе:	40.0 на хоз.- в питвевые нужды 12.0 на противо- пожарные нужды	31,68	4,88	2,41	2x2,5	$2,2 \mathrm{kBT}$	
-Т3 -горячее водоснабжение офисов		0,65	0,65	0,319			
-Полив рии		0,40					
К1-канализация бытовая		30,00	4,04	3,45			
К1.1-канализация быттовая		1,28	0,88	2,137			
Наружное пожа- ротушение				15,00			
Внутренние водо- стоки		-	-	8,12			

3.2.2.5.3.Система водоотведения

Согласно техническим условиям №790 от 08.02.2016 г, выданные ООО "Александров Водоканал", отвод сточньтх вод от здания жилого дома запроектирован в дворовую сеть канализации с отводом в городской канализационный коллектор №11 ($ж / 6$ труба Ду 1000 мм от КНС№8 до ГНС).

Врезки в дворовую канализацию выполняются в проектируемые колодцы из сборных ж/б элементов диаметром 1000 мм ГОСТ 8020 - 90 (т.пр. 902 -09-22-84).

Колодцы оборудуются люками, крышками и ходовыми скобами. Ж/б элементы покрыты антикоррозийной гидроизоляцией. Наружные сети канализадии прокладываются из двухслойных профилированных труб «КОРСИС» из высокомодульного полиэтилена ТУ 2248-001-73011750-2005 0160 и 200мм и прокладывается на глубине $1,5^{\wedge} 2,0$ м. Грунтовые воды на площадке строительства бурением не вскрыты.

В здании для сбора и отведения сточных вод запроектированы внутренние системы:

- бытовой канализации от жилых помещений;
- бытовой канализации от встроенных помещений;
- ливневой канализации,

Хозяйственно-бытовая канализация запроектирована из полипропиленовых труб ТУ2248-043-00284581-2000 $0 \quad 110$ и 50 мм в санузлах и чугунных канализационных безнапорных труб 0100 и 50 мм ГОСТ 6942-98 - стояки и помещения техподполья (пожелание заказчика). Прокладка внутренних систем водоотведения производится над полом помещений санузлов и помещений техподполья.

Все приемники сточных вод имеют гидравлические затворы (сифоны). На внутренних системах хоз-бытовой канализации предусмотрена установка ревизий и прочисток согласно СНиП 2.04.01-85*.

Для вентиляции системы стояки хоз-бытовой канализации выведены на 300 мм выше кровли.

На внутренних сетях бытовой канализации предусматривается установка прочисток на поворотах (при изменении направления движения стоков), если участки не могут быть прочищены через другие участки. Так же предусмотрена установка на стояках ревизий в жилых зданиях высотой 5 этажей и более - не реже чем через три этажа (на первом и последнем этаже обязательно).

Стояки канализации в местах прохода через междуэтажные перекрытия прокладываются в противопожарных муфтах, при пересечении трубопроводом стен и перегородок трубы обертываются рубероидом в 2 слоя и обвязываются шпагатом.

В помещении насосной станции в приямке устанавливается дренажный насос WiloDrainLift TMЗ-0,5 EM для откачки случайного пролива вод. Пролитая вода откачивается в бытовую каналкзацию через обратный клапан.

Отвод сточных вод от здания жилого дома предусмотрен в проектируемую дворовую сеть канализации с отводом в городскую канализацию.

Трубопроводы укладываются на грунтовое плоское основание с песчаной подготовкой толщиной $150 \mathrm{mм}$.

После монтажа канализационные сети подлежат испытанию гидравлическим способом в соответствии с СНиП 3.05.04-85*.

Величина гидростатического давления в трубопроводе составляет 0,04 МПа. Испытание проводится при не присыпанном землей трубопроводе в течение 30 мин.

Канализационные колодцы выполняются из сборных железобетонных элементов по т.п.р. 902-09-22.84.

Внутренние водостоки обеспечивают отвод дождевых и тальх вод с кровли открыто в лотки у здания. Система внутренних водостоков запроектирована из стальных электросварных труб $0108 \times 4,5$, окрашенных масляной краской в два слоя. На кровле устанавливаются водосточные воронки HL62.1P с электрообогревом (Австрия).

В проекте предусмотрен отвод тальх вод из водосточных стояков в зимний период года в бытовую канапизацию.

При устройстве открытого выпуска на стояке предусмотрен гидравлический затвор с отводом талых вод в зимний период года в бытовую канализацию. На стояках для прочистки устраиваются ревизии.

Система водостоков монтируется из стальньх водогазопроводных труб по ГОСТ 3262-75*. На выпусках водостоков устанавливаются сварные гидрозатворы из стальных отводов.

Расчетный расход дождевых вод с кровли здания составляет $8,12 \pi / \mathrm{c}$ при уклоне кровли 0,02.

Отвод ливневых стоков с территории жилого дома осуществляется вертикальной планировкой.

3.2.2.5.4.Отопление, вентиляиия и кондичионирование воздуха, тепловые сети

Жилое здание имеет два пожарньх отсека, деление осуществляется по горизонтали на отметке +3.600 перекрытиями с огнестойкостью не менее EI150. На отм. 0.000 расположен магазин непродовольственных товаров. На отм. +3.600 и выше жилые квартиры.

В здании предусмотрены помещения с категориями по взрывопожароопасности B4 и Д.

Автоматические системы водяного пожаротушения не предусмотрены. Систем порошкового пожаротушения не предусмотрено.

Из торговых помещений предусмотрены выходы непосредственно наружу.
Постоянные рабочие места в помещениях складского назначения отсутствуют.
Для всех помещений с постоянными рабочими местами предусмотрено естественное проветривание.

Источник теплоснабжения - собственные встроенные теплогенераторные и теплогенераторы в кухнях.

Для всех вентиляционньхх приточных установок используются электрические калориферы.

Для всех приточных установок предусмотрена погодозависимая автоматика, регулирующая расход электроэнергии и поддерживающая расчетные параметры внутреннего воздуха в помещениях.

Для различных помещений здания приняты следуюшие температуры внутреннего воздуха:

В холодный период года:

- жилые комнаты $20^{\circ} \mathrm{C}$;
- кухни, туалеты, совмещенные санузлы жилой части здания $18^{\circ} \mathrm{C}$;
- л/к жилой части здания $14^{\circ} \mathrm{C}$
- торговые залы $18^{\circ} \mathrm{C}$
- кладовые . $12{ }^{\circ} \mathrm{C}$
- адм. помещения с постоянным присутствием людей (2-я кат.) $18^{\circ} \mathrm{C}$;
-уборные(санузлы) нежилой части здания
$14^{\circ} \mathrm{C}$;
- технические помещения, помещения уборочного инвентаря $14^{\circ} \mathrm{C}$.

Источником теплоснабжения объекта являются газовые двухконтурные настенные котлы, расположенные в теплогенераторной (для 1 -го этажа) и в кухнях для жнлых помещений. Для отопления лестничных клеток и лифтовых холлов используются электрические конвекторы. Для нагрева воздуха в калориферах системы вентиляции используются электрические калориферы.

Для отопления 1-го этажа предусмотрены котлы BAXI LUNA-3 310 Fi (двухконтурный) и BAXI LUNA-3 1.310 Fi (одноконтурный). Мощность каждого котла 31 кВт.

Для отопления жилой части здания предусмотрены котлы BAXI MAN5 18 F (двухконтурный) и BAXI MAIN 514 F (двухконтурный), мощность каждого $18 \mathrm{\kappa Br}$ и 14 kB т соответственно. Котлы мощностью $18 \kappa \mathrm{~B}$ т предусмотрены для двухкомнатных квартир, котлы мощностью $14 \mathrm{\kappa B}$ т предусмотрены для однокомнатныхх квартир.

В настенных котлах используется комплектное оборудование для водоподготовки (теплообменник, фильтры, подпиточный клапан) и предусмотрены системы безопасности (расширительный бак, воздухоотводчик, датчики температуры).

Воздух на горение забирается по приточному воздуховоду диаметром 80 мм снаружи помещений. Удаление продуктов горения от дымохода котла происходит через воздуховод диаметром 80мм который соединяется с кирпичным каналом.

Для котлов жилых помещений предусмотрены коллективные дымоходы сечением $270 \times 270 \mathrm{mм}$ со спутниками $140 \times 140 \mathrm{mм}$. Для котлов 1 -го этажа предусмотрены собственные дымоходы сечением 270×270 мм со спутниками 140×140 мм .

Воздуховоды диаметром 80 мм для удаления продуктов горения исполнены класса плотности «В» из нержавеющей стали толщиной 1 мм.

Параметры теплоносителя на выходе из котлов:

- трубопровод T1-80 ${ }^{\circ} \mathrm{C}$;
- трубопровод Т2-60 ${ }^{\circ} \mathrm{C}$;
- Давление на выходе из котлов жилой части здания - $\mathrm{P} 1=1,0$ кг $/ \mathrm{cм}, \mathrm{P} 2=0,9 \mathrm{\kappa г} / \mathrm{cm}^{2}$;
- Давление на выходе из котлов 1 -го этажа - $\mathrm{P} 1=1,2 \mathrm{\kappa г} / \mathrm{cm}^{2}, \mathrm{P} 2=1,0 \mathrm{kr} / \mathrm{cm}^{2}$.

Для приготовления горячей воды предусмотрены котлы с двухконтурной системой нагрева, мощность котлов подбиралась из расчета нагрева требуемого количества воды на ГВС в каждом котле.

Регулирование отпуска теплоты местное, автоматикой каждого котла по температурному графику (по датчику темпсратуры наружного воздуха).

В теплогенераторной выполнена естественная приточно-вытяжная вентиляция. Для защиты от загазованности предусмотрен аварийный вентилятор B3.

Расчетная температура внутреннего воздуха для холодного периода года принята:
-в жилых и общественных помещениях - согласно ГОСТ 30494-2011.
Система отопления двухтрубная горизонтальная с встречным движением теплоносителя.

Расчет системы отопления выполнен в программе 3 AO «Данфосс» версии 3.8 .
Расчетное гидравлическое сопротивление системы отопления 1-го этажа здания - 1500 мм. в. ст.

Расчетное гидравлическое сопротивление системы отопления жилых квартир здания 600 мм. в. ст.

Скорость движения теплоносителя принята в пределах нормы:
-для систем отопления $\mathrm{V}=0,15-0,8 \mathrm{~m} /$ сек.
В качестве нагревательньх приборов приняты биметаллические радиаторы Сантехпром РБС-500. Установленная мощность одной секции РБС-500 составляет 180Вт с различным количеством секций в зависимости от расчетных потерь помещений. Длина отопительных приборов принята не менее 50% оконного проема. У нагревательных приборов устанавливаются комплектные терморегуляторы Danfoss RA-N с термоголовками R-2000. Возможность регулирования предусматривается с помощью термостатических элементов на вентилях. Для системы отопления 1 -го этажа также предусмотрены автоматические балансировочные клапаны ASV-M для обеспечения постоянного перепада давления в сети с возможностью местного регулирования теплоотдачи отопительных приборов.

На приборах отопления предусмотрены комплектные краны для выпуска воздуха.
Для помещений лестничных клеток и лифтовых холлов предусмотрены электрические отопительные конвекторы ЭВНБ. Отопление пестничных клеток происходит за счет радиаторов на 1-3 этажах. Радиаторы в лестничных холлах установлены на каждом этаже.

В теплогенераторной 1-го этажа и у каждого котла жилых помещений предусмотрена запорная арматура и спускная арматура, также спускная арматура предусмотрена во всех нижних точках сети для опорожнения отдельных участков. Для балансировки системы используются термостатические клапаны RA-N в отопительных приборах. Компенсация

теплового расширения магистральных трубопроводов решается за счет естественных углов поворота и компенсаторов П-образных. Проход трубопроводов через стены и перекрытия осуществить через футляр с заделкой негорючим материалом.

Для приточных вентиляционных установок систем $\Pi 1$, П2 предусмотрен нагрев воздуха в холодный период года электрическими калориферами. Калориферы входят в состав установок $\Pi 1$, П2, управляются комплектными щитами автоматики NED ACET. Нагрев воздуха по расчетным температурам наружного и внутреннего происходит от $-28^{\circ} \mathrm{C}$ до $+18^{\circ} \mathrm{C}$ соответственно.

Вентилядия жилого здания выполнена приточно-вытяжной с естественным и с механическим побуждением.

Проектные показатели воздухообменов для жилой части здания принимались по СП 54.13330 .2011 и составляют:
-спальни $\pm 3 \mathrm{~m} / ч$ на 1 m жилой площади;
-кухни (с газовыми плитами)
-ванные, душевые, туалеты, совмещенные санузлы
$-100 \mathrm{~m} / \mathrm{m} ;$
$-25 \mathrm{~m} / \mathrm{m}$;
Для помещений первого этажа предусмотрена вентиляция с естественным и механическим побуждением.

Проектные показатели воздухообменов для помещений 1-го этажа принимались по СП 60.13330 .2012 и составляют:

- постоянные рабочие места с естественным проветриванием $\pm 40 \mathrm{~m} / \mathrm{q}$;
- на каждого посетителя магазина $\pm 20 \mathrm{~m} / \mathbf{4}$;
- санузлы
-50м3/ч;
- пом. уборочного инвентаря - по расчегу, но не менее 1 -но кратного.

Забор воздуха для притока в жилые помешения осуществляется на высоте не менее 2 m от уровня земли через воздухозаборные оконные клапаны АЭРЭКО ЕММ 11-35.

Выброс воздуха всеми системами с происходит на высоте не менее 3 m . выше кровли здания, вне зоны ветрового подпора.

Для помещения жилой части здания предусмотрены системы естественной вентиляции через регулируемые решетки АМР 150×250. Воздух удаляется через каналы-спутники сечением 140×140 в общий сборный канал сечением 270×270 и 390×270 для санузлов и кухонь соответственно. Присоединение к общему каналу осуществляется с помощью устройства воздушного затвора.

Регулирование расхода воздуха возможно с помощью клапанов в решетках AMP.
Для раздельных санузлов и ванн предусмотрены переточные решетки MB150 в верхней части перегородок.

В помещении торгового зала невозможно обеспечить требуемый воздухообмен в теплый период года, по тому предусмотрена механическая приточно-вытяжная вентиляция системами П1, П2, В1, В2.

Забор воздуха для притока в вентиляционные установки 1-го этажа осуществляется на высоте не менее 2 м. от уровня земли через воздухозаборные решетки АРН-С. Скорость воздуха в сечении приточных решеток принимались не более $2 \mathrm{~m} / \mathrm{c}$ при условии соблюдения требуемых шумовых характеристик.

Для участков воздуховодов от вентиляционной заборной решетки до вентустановки предусмотрена негорючая теплоизоляция Rockwool Вайред MAT 30мм.

Приточные и вытяжные вентиляционные установки расположены внутри здания в объеме подвесного потолка в помещениях магазина, которые они обслуживают.

Вентиляция с механическим побуждением осуществляется приточными и вытяжными вентустановками фирмы NED.

Приточный воздух подогревается электрическими калориферами до расчетной температуры внутреннего воздуха. Для защиты от обмерзания калориферов и автоматизации процесса регулирования параметров теплоносителя в системе предусмотрена автоматика

регулирования. Все вентиляционные установки оборудованы воздушными клапанами с электроприводом с подогревом лопаток. Для приточных установок предусмотрены системы автоматизированного управления с помощью шкафов автоматики NED ACET. На приточновытяжных системах с механическим побуждением установлены шумоглушители.

Для административных помещений, с естественным проветриванием воздухообмен принят $40 \mathrm{~m} / \mathbf{4}$ на каждого сотрудника, проветривание осуществляется с помощью открываемых фрамуг в помещениях, высота притока воздуха - не менее 2 m над уровнем земли.

Для административньх и общественньх помещений 1-го этажа с постоянным пребыванием людей и возможностью естественного проветривания предусмотрен воздухообмен за счет периодического открывания фрамуг и форточек в размере $40 \mathrm{~m}^{3} /$ ч на каждого человека. Фрамуги и форточки должны функционировать в любое время года.

Для торговых залов, с естественньм проветриванием, воздухообмен принят $20 \mathrm{~m} / \mathrm{q}$ на каждого посетителя.

Количество сотрудников в торговом зале - 4чел, количество посетителей - 120 чел, данные определены частью TX проекта.

Механическая вентиляция в торговых помещениях осуществляется через приточные и вытяжные диффузоры ДПУ-М в верхней части помещений.

Размер диффузоров выбран исходя из условия не превышения скорости воздуха в их сечении более $1 \mathrm{~m} / \mathrm{c}$, при соблюдении нормируемых акустических характеристик.

Регулирование расхода воздуха возможно с помощью клапанов в решетках AMP и дроссель-клапанов ДК.

Для помещений $3,4,5$ и $14,15,17$ первого этажа предусмотрена вытяжная вентиляция с естественным побуждением через кавалы.

Для входных дверей 1-го этажа, без тамбуров предусмотрены тепловые завесы У1, У2 с электрическим источником тепла КЭВ-6П2021Е.

Помецений с постоянными рабочими местами без естественного проветривания не предусмотрено.

Для помещений уборочного инвентаря и санузлов предусмотрены естественные вытяжные системы.

Для помещений машинных отделений лифтов предусмотрены вытяжные системы с естественным побуждением с применением дефлекторов ДЗ15.000.000 200.

Размер воздуховодов определяется исходя из расчетного расхода воздуха и максимањьно допустимых скоростей воздуха, не превышающих 5 м/с в магистральных воздуховодах и $4 м /$ с в ответвлениях от них.

При переходе воздуховодов через перегородки стен отверстия изолируются негорючими материалами.

Техническое обслуживание и ремонт вентиляционных установок должны осуществляться специализированными организациями, имеющими свою аварийнодиспетчерскую службу. Для обслуживания установок предусмотрены передвижные лестницы с площадками обслуживания по ГОСТ 24258-88.

Монтаж систем отопления и вентиляции производить в соответствии с требованиями СНиП 3.05.03-85 «Внутренние санитарно-технические системы».

Система дымоудаления для жилой части здания не предусмотрена, так как высота здания не превышает 28 м.

Для торгового зала 1 -го этажа систем дымоудаления не предусмотрено, т.к. есть возможность естественного проветривания через открывающиеся окна.

Отопительные приборы предусмотрены у наружных стен и под оконными проемами. На путях эвакуации нагревательные приборы установлены в нишах и не выступают за плоскость стены.

Удаление воздуха из систем отопления и теплоснабжения осуществляется из верхних

точек с установкой воздухосборников или автоматических воздухоотводчиков, а опорожнение - в нижних точках систем.

Трубопроводы систем отопления предусмотрены из труб полипропиленовых БИР ПЕКС Стандарт (Класс 6) PN20, SDR 7,4 по ГОСТ P 52134-2003. Трубопроводы проходят гидравлическое испытание.

Для трубопроводов, проложенных в объеме неотапливаемого подвала предусмотрена изоляция негорючим материалом Rockwool «Цилиндры» толщиной $50 \mathrm{mм}$ различного диаметра, шнуром теплоизоляционный из минеральной ваты (для арматуры) по ТУ 36.16.22-$33-89$ и с покрытием оцинкованной тонколистовой сталью по ГОСТ 14918-80 толщиной $0,35 \mathrm{~mm}$.

В местах перехода трубопроводов в объеме пола трубопроводы изолируются материалом Энергофлекс толщиной 12мм.

Монтаж систем отопления и вентиляции производить в соответствии с требованиями СНиП 3.05.03-85«Внутренние санитарно-технические системы».

Вентиляционное оборудование располагается в обслуживаемых помещениях.
Воздуховоды приточных и вытяжных систем проложенные внутри здания изготавливаются из оцинкованной стали по ГОСТ 14918 -80 класса герметичности «А» (нормальные).

Комплекс мероприятий по снижению шума от вентиляционных систем в рамках данного раздела включает в себя следующие решения:

- подбирается оборудование с минимальной шумовой миссией и с малым числом оборотов электродвигателей систем вентиляции;
- управление работой инженерного оборудования осуществляется в оптимальных режимах с помощью системы автоматического управления;
-в системе вентиляции предусмотрены центральные глушители на каждой вентустановке;
-для каждой вентустановки предусмотрены гибкие вставки на входе и выходе из вентилятора;
- размеры воздуховодов выбираются из условия обеспечения скорости в них не более $4 \mathrm{~m} / \mathrm{c}$;
- предусматриваются виброппоры для вентустановок с большой производительностью;
- расчетным путем подбираются воздухораспределительные устройства, сечения воздуховодов, обеспечивающих нормативные акустические характеристики.

Для компенсации теплового расширения трубопроводов предусмотрены П- образные компенсаторы и углы поворота трубопроводов. При переходе через стены и перекрытия предусмотрены гильзы для трубопроводов и герметизация негорючим материалом.

Для всех помещений с газоиспользующим оборудованием предусмотрена система аварийной вентиляции B3-B11, с вентиляторами Вентс $100-\mathrm{K}$, которые включаются по сигналу датчиков загазованности при достижении ПДК. Вентиляторы установлены в каналах систем естественной вентиляции, над вытяжными решетками AMP.

Работа механических вентиляционных систем 1 -го этажа контролируется световыми сигналами на пульте управления.

При срабатывании датчиков пожарной сигнализации выполнены:
выключение и блокировка включения систем П1, П2, В1, В2 и закрывание заслонок в составе установок. Системы автоматизации отопления предусмотрены комплектные в настенных котлах. Для регулирования параметров системы отопления предусмотрен контроллер котла и датчик температуры наружного воздуха, регулирование происходит по температурному графику, в зависимости от наружной температуры воздуха.

Для приточных установок принято оборудование фирмы NED и предусмотрена

автоматизация, обеспечивающая контроль за работой систем. В комплект поставки входят шкафы системы автоматического управления, совмешенные с силовым щитом, а также датчики КИП и исполнительные механизмы.

При срабатывании датчика происходит автоматическое выключение приточных и вытяжных систем.

Все вентиляционное оборудование и воздуховоды заземляются для защиты от статического электричества.

Предусмотрено автоматическое включения завес У1-У2 при открывании дверей и при снижении температуры в районе ворот ниже 10 градусов.

3.2.2.5.5.Сети связи

Проектная документация разработана на основании технического задания Заказчика на проектирование и технических условий Св-55/15 от 29.12 .15 г. и содержит проектные решения по установке и монтажу:

- телефонной связи;
- эфирного телевидения;
- радиовещания;
- автономной пожарной сигнализации в жилой части здания;
- системы автоматической пожарной сигнализации на $1-\mathrm{m}$ этаже;
- системы оповещения и управления эвакуацией людей при пожаре.

Телефонизация
Для подключения здания к телефонной сети в проекте предусматривается прокладка телефонных кабелей ТППэпт $30 \times 2 \times 0,5$ и ТППэпт $50 \times 2 \times 0,5$ от АТС ООО «Связист», расположенной на тех. этаже дома по адресу Гагарина, 23 к. 2 второй подъезд, до кровли проектируемого жилого дома воздушным способом

Питающие телефонные кабели заводлтся в проектируемый жилой дом через кровлю, где устанавливаются разделительные муфты. От разделительных муфт до оконечных устройств, устанавливаемых согласно схеме, прокладываются многопарные кабели типа ТПВ. Кабели прокладываются в межэтажных стояках из ПВХ трубы $\mathbf{d}=$ 25mм.

В качестве оконечных кабельных устройств, для жилого дома используются распределительные коробки КРТ-10x2 по 3 шт. на подьезд. Оконечные устройства располагаются на 2,5 и 8 этажах в слаботочных отсеках межэтажных электрошкафов. От электрошкафов до ввода в квартиры предусматриваются ПВХ трубы $\mathrm{d}=20 \mathrm{mм}$, закладываемые в штрабе стен.

Подключение жильцов выполняется после их заселения по их требованию.
Радиофикация
В городе отсутствует проводная радиосеть. Местная радиокомпания ведет вещание на частоте 67 МГц. Для приема местного радиовещания предусмотрена установка радиоприемников «Лира РП-234-1» (производитель ОАО «Ижевский радиозавод») в каждой квартире. Диапазон принимаемых частот: УКВ-65,8-108,0 МГц, СВ-0,53-1,60 МГц, ДВ-0,15-0,28 МГц.

Телевидение
На крыше жилого дома устанавливается универсальная полнодиапазонная телевизионная антенна типа DCRS. 1753 с характеристиками: диапазон приема 1-69 каналов; усиление: $1-3=9-10,5$ дБ, $4-5=8,5-14$ дБ; Front/Back $-1,5 / 19,5 / 26$ дБ; элементы 1/9/43; длина - 2420 мм.

Для усиления сигнала на лестничной площадке последнего этажа в металлическом шкафу типа ПУЭН устанавливается широкополосный усилитель VEKTOR LAMBDA типа D8X-AE6-36W.

На каждом этаже, в слаботочном отсеке совмещенных электрошкафов, устанавливаются ответвительные абонентские коробки.

Магистральные линии, стояки выполнены кабелем РК-75-12 в вертикальном канале. Для элекьропитания телевизионного усилителя, подается отдельная группа от ВРУ жилого дома. Напряжение электроснабжения ~220B, потеря напряжения не превышает 5\% от номинального. Электроснабжение выполнено трехжильным кабелем ВВГнг(A)-LS $3 \times 2,5$.

Абонентские вводы телевизионного кабеля в квартиры выполняются по заявкам жильцов за их счет. Для прокладки телевизионного ввода в квартиры на лестничных площадках в штробе стен прокладываются трубы ПВХ d=20мм

Система пожарной сигнализации
В соответствии с СП 5.13130 .2009 проектом предусматривается установка автономных дымовых пожарных извещателей во всех комнатах, кухнях, прихожих квартир. Запроектированы оптико-электронные пожарные извещатели типа ИП 212-43.

Запите системой автоматической пожарной сигнализации подлежат все помещения и коридоры, независимо от площади встроенно-пристроенные помещения 1 -го этажа здания, кроме помещений с мокрыми процессами (душевые, санузлы, охлаждаемые камеры, помещения мойки и т. п.); насосных водоснабжения, бойлерных и др. помещений для инженерного оборудования здания, в которых отсутствуют горючие материалы; категории В4 и Д по пожарной опасности; лестничньх клеток.

Для построения пожарной сигнализации применен прибор приемно-контрольный охранно-пожарных «С2000-4».

В системе пожарной сигнализации используются извещатели пожарные:

- извещатели пожарные дымовые «ИП 212-41М», которые реагируют на дым;
- извещатели пожарные ручные адресные "ИПР 513-10», которые приводятся в действие человеком, обнаружившим пожар.

Основное оборудование системы пожарной сигнализации устанавливается на $1-$ м этаже возле выхода, где предполагается место охраны.

Управление системой осуществляется при помощи пульта управления «С2000M» по интерфейсной линии кабелем.

Система оповещения о пожаре
В нежилых помещениях 1-го этажа предусмотрена система оповещения о пожаре 2-го типа, которая состоит из:

- оповецателей световых Табло «Выход» ОПОП-1-8;
- звуковых оповещателей «AC-10».

В общих коридорах жилой части здания предусмотрены звуковые оповещатели «AC-10».

Включение системы оповещения осуществляется при помощи пульта управления «С2000M". При обнаружении пожара извешателем ППКОП «С2000-4» подает сигнал «Пожар» на ПУ «С2000М». «С2000М» в свою очередь, подает сигнал на блок "С2000КПБ", который запускает звуковые оповещатели "AC-10».

Световые оповещатели подключены к резервному источнику питания. Световое Табло «Выход» включено постоянно. Электропитание прибора «С2000-4», блока «С2000КІІБ», пульта управления «С2000М», звуковых оповещателей «АС-10», световых оповещателей Табло «ВЫХОД» осуществляется от 1 -го резервного источника питания «ИВЭПР $12 / 3,5$ » с номинальной емкостью встроенных аккумуляторов 2×17 А 14 .

3.2.2.5.6. Система газоснабжения

Проект газоснабжения "Многоквартирный 10 -ти этажный жилой дом со встроеннопристроенными нежильми помещениями" расположенный по адресу: Владимирская

область, г. Александров, ул. Жулева, (1-й этап строительства) строительства внутридомового и фасадного газопровода» разработан на основании технических условий, выданньх АО "Газпром газораспределения Владимир" № 242/314/3 от 8 июня 2016г. и договора на проектные работы.

Согласно ТУ №242/314/3 от 8 июня 2016г "Дополнения к техническим условиям" место подключения от проектируемого газопровода низкого давления у здания 10 -ти этажного многоквартирного жилого дома (проектируется другой проектной организацией).

Проектом газоснабжения многоэтажного жилого дома предусмотрена фасадная прокладка из стальных электросварных труб по ГОСТ 10704-91*.

Газоснабжение объекта предусматривается природным газом по ГОСТ 5542-87. Расход газа предусматривается для бытовых нужд, отопления и горячего водоснабжения.

Соединение стальных труб предусматривается дуговой электросваркой встык, в местах установки арматуры - разъемные соединения. Типы, конструктивные элементы и размеры сварных соединений должны соответствовать ГОСТ 16037-80. Надземный газопровод низкого давления контроль качества сварных соединений стальных конструкций производится внешним осмотром с проверкой геометрических размеров и формы швов в объеме 25% сварных соединений, от общего числа стыков, но не менее одного сваренных стыка каждым сварщиком, радиографическим методом по ГОСТ 7512$82^{*}$, или ультразвуковым методом по ГОСТ 14 782-86.

Типы, конструктивные элементы и размеры сварных соединений должны соответствовать ГОСТ 16037-80. Подземный газопровод низкого (Г1) давления из полиэтилена не требует мероприятий по защите от коррозии. Исключение составляют участки переходов «полиэтилен-сталь» иа выходе газопровода из земли. Они в качестве пассивной защиты от коррозии покрываются изоляцией на основе полиэтилена с полимерньм адгезивом.

Участки надземного газопровода низкого давления (в местах установки задвижек), предлагается окрасить за 2 раза масляной краской в желтый цвет по двум слоям грунтовки ГФ-021 ГОСТ 25129-82, и по двум слоям эмали по ГОСТ 8292-85.

При прокладке газопроводов необходимо соблюдать все нормативные расстояния от зданий, сооружений и коммуникаций сонасно СП 62.13330.2011. Расположение существующих коммуникаций в местах пересечения и сближения с прокладываемым газопроводом уточнить на месте в присутствии представителя соответствующих служб, глубину заложения существующих коммуникаций определить шурфованием до начала производства работ.

Фасадный обвязочный газопровод низкого (Г1) давления после выхода из земли, проложить на кронштейнах под окнами 1 -го этажа.

Устанавливаемая запорная арматура должна быть испытана по 1 -му классу герметичности. В качестве задвижек принять стаљьные шаровые запорные конструкции ГШК.

Внутреннее газооборудование жильх квартир включает в себя установку в каждой кухне газовой плиты ПГ-4 и отопительного котла Navien 24 K . Топливо - природный газ теплотворной способностью - 8000 ккал/час.

Плиты ПГ-4 и котлы работают на газе низкого давления. Часовой расход газа на квартиру составляет $3,83 \mathrm{~m}^{3} / ч а с$. Для учёта расхода газа проектом предусматривается установка в каждой квартире газового счётчика «BK-G4 т» импульсного типа.

В проекте применены стальные водогазопроводные трубы по ГОСТ 3262-75.
ООО «Алдега» представлено гарантийное письмо о контроле за запретом остекления лоджий в квартирах для предотвращения аварийной ситуации - загазованности и соблюдению требований пункта 6.5.8. СП 60.13330 .2012 (предусмотреть в помещении лоджии постоянно действующую вентиляцию).

3.2.2.6. Проект организации строительства

Участок строительства многоквартирного жилого дома, расположенного по улице Жулева в г. Александрове Владимирской области. Отведенный участок свободен от существующих зданий и подземных коммуникаций.

Площадь участка в границах землеползования - 20337 м 2.
Подъезд на площадку строительства осуществляется с ул. Жулева.
Строительство выполняется подрядным способом. Генеральная подрядная строительная организация ООО «Алдега». Для выполнения санитарно-технических, электромонтажных работ, работ по монтажу слаботочных систем и оборудования, части общестроительных работ, привлекают на правах субподряда специализированные строительные и монтажные организации.

Доставка местных конструкций, изделий, материалов и полуфабрикатов предусматривается по существующим автодорогам автомобильным транспортом.

Привозные конструкции и материалы поставляются автотранспортом с последующей перегрузкой на автотранспорт и доставкой на плщадку.

Участок, отведенный под строительство многоквартирного жилого дома, расположен на южной окраине города Александрова, в строящемся микрорайоне «Южный». Абсолютные отметки колеблются от 179.25 до 180.50 м.

Строительная площадка ограждается временным защитным забором из инвентарных щитов с козырьком. Въезд и выезд на стройплощадку осуществляется со стороны ул. Жулева согласно стройгенплана. На территории строительства имеется два въезда. Дороги имеют покрытие, пригодное для проезда пожарных автомашин в любое время года. Ворота для въезда шириной не менее 4 m .

Временное водоснабжение решается согласно тех. условий ООО «Александров Водоканал» от существуюших сетей водопровода, временное элект До потребителей электроэнергия доставляется по временньм наружным воздушным сетям.

Электроосвещение площадки предусматривается прожекторами ПКН- 1500 H , установленные на столбах.роснабжение- согласно тех. условий МУП «Александровэлектосеть».

В состав подготовительного периода согласно СНиП $3.01 .01-85$ входят, работы, связанные с подготовкой строительной площадки и производству основньх строительномонтажных работ:

1. Сдача- приемка геодезической разбивочной основы для строительства и геодезические разбивочные работы для прокладки инженерных сетей, дорог и возведение зданий и сооружений.
2. Планировка территории, срезка растительного слоя грунта, организация временных стоков поверхностных вод: водоотвод с участка решен в сторону понижения рельефа.
3.Устройство внутренних внутриплощадочных дорог и проездов к площадке строительства проектных дорог, используемых во время строительства.
3. Устройство инвентарных временных ограждений строительной площадки.
5.Обеспечение строительной площадки противопожарным водоснабжением и инвентарем, освещением и средствами связи.

Основной период строительства осуществляется в три этапа.
I этап - работы, связанные с возведением подземной части здания (земляные работы, устройство фундаментов, выпусков и вводов инженерных коммуникаций, обратная засьпка фундаментов, стен подвалов);

II этап - работы, связанные с возведением надземной части здания (кирпичная кладка стен, монтаж плит перекрытия и покрытия, устройство кровли, специальные

III этап - отделочные работы.
Перечень основньхх машин и механизмов :

Наименование	Марка	Мощность или одъёмность	Кол-во
1 Экскаватор	KOMATSU PC220-7	125 kBT	1
2. Автокран	KАМАЗ КС-55722-2	25 т	1
3. Погрузчик универсальный	$\begin{gathered} \text { АМКОДОР-332C4- } \\ 01 \end{gathered}$	3,4 T	1
7 Вибротрамбовка	ВУТ-5	0.1 T	2
8 Строительный подъемник	ТП-3		1
9 Вибраторы глубинные	ИB-17		2
10 Сварочный аппарат	CAK-2M	$7.5 \mathrm{\kappa B}$ т	1
11 Сварочный трансформатор	ТД-500		2
12 Инвентарная сборно-разборная опалубка	комплект		10
13 Виброрейка бензиновая	TСС В ВР-35 (L-3)		4
14 Вибратор глубинный бензиновый	BV 35M		4
15 Передвижная компрессорная установка	КБ-8		2
16 Водоотливной насос	Grunfoss «Unilift KP-350)		8
17 Машина штукатурно-затирочная	CO-86/112		4
-18 Краскопульт	CO-45A		4
19 Машина ручная сверлильная	ИЭ-1211		8
20 Машина для резки металла	$\begin{aligned} & \text { Hitachi } \\ & \text { Gl3SS } \end{aligned}$		4
21 Автогудронатор	ДС-395		1
22 Асфальтоукладчик	ДС-181-02		1

На территории временного бытового городка строителей предусмотрена плошадка для стоянки автомобилей на 6 машино-мест, щиты со средствами пожаротушения, контейнеры для сбора пищевых отходов.

Строительная площадка оборудована комплектом первичных средств пожаротушения песок, лопаты, багры, бочки для хранения воды, топоры, огнетушители (пожарными щитами). Наружное пожаротупение предусмотрено из пожарных гидрантов. На строительной площадке предусмотрены: пожарный щит (4 шт.), знаки, запрещающие курить и пользоваться открытым огнем, место курения.

Первичные противопожарные средства указаны на стройгенплане.
Опасную зону вокруг здания (потенциально-действующих производственных факторов) обозначают сигнальньм ограждением.

На весь период строительства площадку ограждается металлическим забором высотой $2,0 \mathrm{~m}$ с защитным козырьком.

Входы в строящееся здание приняты защищенными сверху сплошным навесом шириной 2 м от стены здания.

Границы опасньх зон вблизи движущихся частей и рабочих органов машин приняты размером 5 м.

У въезда на строительную площадку установлена схема движения средств транспорта, а на территории строительной плоцадки установлены хорошо видимые дорожные знаки.

Строительный генеральный план содержит информацию для организации производства работ в подюоювительный и основной периоды строительства и составлен на основе генплана проектируемого объекта и представленных заказчиком и подрядчиком исходных данных.

Строительные материалы, конструкции и изделия на стройплощадку поступают централизованно автотранспортом.

На стройгенплане показана принципиальная схема размещения монтажных механизмов.

Более детальная проработка вопросов производства строительно-монтажных работ должна быть выполнена на стадии проектов производства работ.

Наружное пожаротушение принято от проектируемого 2-х пожарных гидрантов, расположенных на расстоянии 55 m от здания. Радиус действия пожарного гидранта до 200 M.

Разработаны меры по охране труда, безопасности населения, благоустройству территории и охране окружающей среды, контролю качества строительньх и монтажных работ, конструкций, материалов и оборудования, организации службы геодезического и лабораторного контроля.

Продолжительность строительства проектируемого объекта составит: 24 месяца, в том числе подготовительный период 1 месяц.

3.2.2.7. Перечень мероприятий по охране окружающей среды

Площадка под строительство объекта расположена на южной окраине города Александров в строящемся микрорайоне "Южный".

Отведенный участок свободен от существующих зданий и подземных коммуникаций (в северной части площадки находится ленточный фундамент на глубине 0,6м от поверхности; южная часть заращена деревьями и кустарниками).

Рельеф плоцадки в основном ровный. Абсолютные отметки поверхности изменяются от 179,25 до 180,50 м. Площадка имеет уклон с севера на юг.

На участке зданий и сооружений не имеется.
На участке зеленых насаждений не имеется.
Границами участка являются:
с северо-востока - 10 -и этажный жилой дом (построен);
с востока - 10 -и этажный жилой дом (проектируемый);
с юго-востока - школа (проектируемая);
с юга - 10-и этажный жилой дом (проектируемый);
с запада - детский сад (проектируемый), 10 -и этажные жилье дома (проектируемые), 9 и этажный жилой дом (построен).

Проектом предполагается строительство 10 -ти этажноло жилого дома со встроенными нежильми помещениями (магазином непродовольственных товаров).

Теплоснабжение
В проекте запроектирована поквартирная система отопления с нижней разводкой. Отопительный котел размещен на кухне каждой квартиры. Дымовые газы от котла удаляются через металлическую коаксиальную трубу и далее через коллективньй дымоход из нержавеющей стали с теплоизоляцией и покрывным слоем из оцинкованной стати.

Водоснабжение
Источником водоснабжения служит городская сеть водопровода, согласно техническим условиям на водоснабжение

Канализация

Водоотведение хозяйственно-бытовых и производственных сточньх вод предполагается осуществлять в существуюший колодец городской канализационной сети, согласно техническим условиям на водоотведение

Предусмотрена система внутреннего водостока с отведением воды с кровли здания через водосточные воронки и сбросом на отмостку.

Фоновые концентрации загрязняюших веществ в районе расположения проектируемого объекта за период наблюдений с 2014 года по 2018 год приняты согласно «Временным рекомендациям. Фоновые концентрации загрязняющих веществ, для городов и населенных пунктов, где отсутствуют регулярные наблюдения за загрязнением атмосферного воздуха».

Фоновые концентрации загрязняющих веществ в атмосферном воздухе

Загрязняющее вещество	Фоновыс концентрации мг/м3	Период наблюдений
Взвешенные вещества	0,195	$2014-2016$
Оксид углерода	2,4	
Диоксид азота	0,054	

Период строительства

Воздействие сводится к воздействию строительньх машин и механизмов. В период строительства возможно временное ухудшение состояния атмосферного воздуха, особенно это касается периода неблагоприятных метеоусловий с развитой приземной инверсией.

Основными источниками выделения загрязняющих веществ при строительстве являются двигатели внутреннего сгорания автотранспорта и строительной техники, сварочные работы, работы по перемещению грунтов, покрасочные работы, гидроизоляционные работы.

Перечень загрязняющих веществ, выбрасываемых в атмосферный воздух в период строительства

Перечень и характери стика загрязня ющих веществ Код	Наименование вещества	Использ. критерий	Значение критерия, Mr/m3	Класс опасност и	Выброс вещества, r / c	Выброс вещества т/год
Строительство объекта						
0123	диЖелезо триоксид (Железа оксид) (в пересчете на железо)	ПДК c / c	0,04000	3	0,002580000	0.000695000
0143	Марганец и его соединения (в пересчете на	ПДК м/p	0,01000	2	0.000278000	0,000075000

	марганца (IV) оксид)					
0203	Хром (Хром шестивалентный) (в пересчете на хрома (VI) оксид)	ПДК е/c	0,00150	I	0,000400000	0,000110000
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/p	0,20000	3	0,0221804	0,0094730
0304	Азот (II) оксид (Азота оксид)	ПДК м/p	0,40000	3	0,0036430	0,0015390
0328	Углерод (Сажа)	ПДК м/p	0,15000	3	0,0135130	0,0043900
0330	Сера диоксид (Ангидрид сернистый)	ПДК м/p	0,50000	3	0,0046190	0,0001806
0337	Углерод оксид	ПДК м/p	5,00000	4	0,1747650	0,0589560
0342	Фториды газообразные	ПДК м/p	0,02000	2	0,000001000	0,000001000
0344	Фториды плохо растворимые	ПДК м/p	0,20000	2	0,000420000	0,000112500
0616	Диметилбензол (Ксилол) (смесь изомеров о-, м-, п-)	ПДК м/p	0,20000	3	0,008263890	0,004250000
2704	Бензин нефтяной	ПДКм/p	5,0	4	0,0001056	0,0000820
2732	Керосин	ОБуВ	1,20000		0,02877310	0,0096700
2752	Уайт-спирит	ОБУВ	1,00000		0,008263890	0,004250000
2754	Углеводороды предельные С12-C19	ПДК м/p	1,00000	4	0,001578000	0,019900000
2907	Пыль неорганическая $>70 \% \mathrm{SiO}$	ПДК м/p	0,15000	3	0,016306900	0,231025000
2908	Пыль неорганическая: 70$20 \% \mathrm{SiO} 2$	ПДК m/p	0,30000	3	0,06571500	0,29332600
Всего веществ: 17					0,35140578	0,6380351

В результате проведенньх расчетов рассеивания установлено, что в период строительства для загрязняюших веществ наблюдается превышение по загрязняющему веществу азота диоксид и пыли неорганической. Расчет по диоксиду азота проведен с учетом фона и с учетом застройки. Максимальные концентрации в контрольных точках на жилой застройке и на границе площадки составляет 0,37 ПДК.

По остальным загрязняющим веществам концентрации не превышают ПДК населенных мест.
Источниками шума в процессе выполнения работ является автотранспорт, землеройная и специальная строительная дорожная техника. Расчет шумового воздействия проведен для совокупности нескольких источников для наихудшей ситуации с точки зрения пумового воздействия (которая возникает, когда на строительной площадке на относительно небольшом расстоянии одновременно работает наибольшее количество техники).

На основании акустических расчётов, доказано, что уровни звука на территории, непосредственно прилегающей к жилой зоне, не превышают нормативных нормативные значения СН 2.2.4/2.1.8.562-06 по шумовому воздействию на окружающую среду как в дневное время, так и в ночное время.

Водопотребление и водоотведение в период строительства
На территории стройплощадки будет предусмотрено помещение для обогрева и отдьха рабочих. Питание работающих на строительстве предусматривается привозное, в специально выделенном и оборудованным для этого помещении в бытовке.

Для нужд рабочих предусмотрен биотуалет.
Водоотведение хозяйственно-бытовых сточных вод на период строительства предполагается осуществлять в существующий колодец городской канализационной сети, согласно техническим условиям на водоотведение №790 от 08.02.2016 г, выданные ООО "Александров Водоканал".

Для предотврашения выноса грязи на автомобильную дорогу со строительной площадки предусматривается установка и эксплуатация двух пунктов мойки колес автотранспорта. Мойка колес принимается марки «Мойдодыр» с замкнутым циклом оборота.

При производстве подготовительных и строительно-монтажных работ воздействие на поверхностные и подземные воды может произойти при движении строительной техники, производстве планировочных работ, вследствие чего может иметь место нарушение естественного стока.

Кроме того, воздействие на водные ресурсы на данном этапе выражается в потреблении воды на производственные и хозяйственно-питьевые нужды строительных бригад.

Вышеперечисленные воздействия на водные ресурсы будут носить кратковременный характер, определенный продолжительностью этапа строительства.

Основным источником образования отходов при строительстве жилого дома будут являться строительно-монтажные работы.

Всего за период строительства образуетея 141,465 тонн отходов, в том числе:

- Осадок (шлам) механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15%, обводненный $-41,30$ т/период;
- Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более) $-0,2$ т/период;
- Мусор от офисньх и бытовьх помещений организаций несортированный (исключая крупногабаритный) $-2,95$ т/период;
- Отходы шлаковаты незагрязненные - 0,34 т/период;
- Отходы (осадки) из выгребных ям $-0,89$ т/период;
- Электроды графитовые отработанные, не загрязненные опасными веществами - 0,115 т/период;
- Лом бетонных изделий, отходы бетона в кусковой форме - 78,58 т/период;
- Отходы строительного щебня незагрязненные $-6,89$ т/период;
- Лом кирпичной кладки - 1,02 т/период;
- Лом и отходы стальные несортированные - 9,18 т/период.

На строительной площадке предусматриваются места для сбора строительного мусора и металлические контейнеры для ТБО в соответствии с установленными правилами. нормативами и требованиями в области обращения с отходами.

Период эксплуатации

Источником теплоснабжения объекта являются газовые двухконтурные настенные котлы, расположенные в теплогенераторной (для 1 -го этажа) и в кухнях для жилых помещений. Для отопления лестничньхх клеток и лифтовых холлов используются электрические конвекторы. Для нагрева воздуха в калориферах системы вентиляции используются электрические каюориферы. При работе ДВС в атмосферный воздух выбрасываются азота оксид, азота диоксид. углерода оксид, углеводороды предельные, серы диоксид, углерод черный (сажа), бензин. керосин. В результате эксплуатации автотранспорта в атмосферу выбрасываются следуюшие загрязняющие вещества: азота диоксид, азота оксид, утлерода оксид, серы диоксид. бензин нефтяной.

Парковки.

Источник 6001 - (источники выделения - легковые автомобили 10шт.)
Источник 6002 - (источники выделения - легковые автомобили 4 шт.)
Источник 6003 - (источники выделения - легковые автомобили 5 шт.)
Источник 6004 - (источники выделения - легковые автомобили 4 шт.)
Источник 6005 - (источники выделения - легковые автомобили 10 шт.)
Источник 6006 - (источник выделения - легковые автомобили 10шт.)
Источник 6007-(источник выделения - легковые автомобили 5 шт.)
Перечень и характеристика загрязняющих веществ

Код	Наименование вещества	Использ. критерий	Значение критерия, мr/m3	Класс опасности	Выброс вещества, r / c	Выброс вещества, T/roд
0301	Азота (IV) оксид Азота диоксид	ПдК м/p	0,2	3	0,1699260	3,0405930
0304	Азота (II) оксид Азота оксид	ПДК м/p	0,4	3	0,0288440	0,4941030
0330	Серы диоксид	ПДК м/р	0,5	3	0,0004009	0,0016700
0337	Углерода оксид	ПДК м/р	5,0	4	0,5594600	6,9990990
0703	Бенз/а/пирен	ПДК м/р	$1 \mathrm{Hr} / \mathrm{M}^{3}$	1	0,0000000608	0,000001096
2704	Бензин (нефтяной, малосернистый)	ПДК м/p	5,0	4	0,01815780	0,068923000
	его веществ: 6				0,7767887608	10,604389096

Анализ представленньх расчетов рассеивания показывает, что все компоненты, которые будут поступать в атмосферу при эксплуатации автостоянок и работе ДВС не нарушат норм качества атмосферного воздуха.

Источником шумового воздействия на близлежащую жилую застройку является автомобильньй транспорт.

На основании представленных расчётов, уровни звукового давления от воздействия автомобильного транспорта (движение по близ расположенным автодорогам) находятся ниже допустимых уровней звукового давления согласно CH 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Доказано также, что воздействие шумовых факторов, создаваемых при эксплуатации всех проектируемьг объектов будет в пределе нормативов.

Воздействие объекта на поверхностные воды при эксплуатации
Согласно технических условий, источником водоснабжения жилого дома является городской водовод Ø 225 мм по ул. Жулёва.

Канатизация
Согласно техническим условиям отвод сточных вод от здания житого дома запрюектирован в дворовую сеть канализации с отводом в городской канализационный коллектор №11 (ж/б труба Ду 1000мм от КНС№8 до ГНС).

В здании для сбора и отведения сточных вод запроектированы внутренние системы:

- бытовой канализации от жилых помещений;
- бытовой канализации от встроенных помещений;
- ливневой канализации

Канализация дождевая

Внутренние водостоки обеспечивают отвод дождевых и талых вод с кровли открыто в лотки у здания. На кровле устанавливаются водосточные воронки HL62.1P с электрообогревом (Австрия).

В ироекге предусмотрен отвод талых вод из водосточных стояков в зимний период года в бытовую канализацию.

При устройстве открытого выпуска на стояке предусмотрен гидравлический затвор с отводом талых вод в зимний период года в бытовую канализацию. На стояках для прочистки устраиваются ревизии.

Отвод ливневых стоков с территории жилого дома осуществляется вертикальной планировкой.

Расчет объемов поверхностного стока выполнен в соответствии с «Рекомендациями по расчету систем сбора, отведения и очистки поверхностного стока с селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты» ФГУП «НИИ ВОДГЕО», Москва, 2006 г.

Характеристика отходов на этапе эксплуатации

- Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства $-0,21 \mathrm{~T} /$ год;
- Отходы из жилищ несортированные (исключая крупногабаритные) - 96,4 т/год;
- Смет с территории предприятия практически неопасный - 207,0 т/год.

Всего за период эксплуатации образуется 303,62 тонн отходов.
Отходы при эксплуатации будут размещены в специально отведенньх местах временного хранения отходов (MBXO) и утилизированы на основании договоров с предприятиями и организациями, занимающимися лицензированной деятельностью по размещению и утилизации отходов. Места временного хранения отходов определены на стадии проектирования, но в процессе эксплуатации будут уточнены Заказчиком.

Площадка временного хранения отходов представляет собой бетонированную площадку размером $6,0 \times 8,0 \mathrm{~m}$.

На открытой площадке располагается контейнер для хранения следуюших видов отходов: мусор от быговых помещений несортированный; отходы потребления на производстве, подобные коммунальньм (смет с территории). отходы от объектов транспортного обслуживания

Лампы люминесцентные ртутьсодержащие хранятся в герметично закрытом металлическом ящике, картонных коробках, утилизируются на специализированные предприятия по договору. В случае нарушения стеклянной оболочки ртуть, обладая высокой токсичностью, представляет серьезную опасность загрязнения воздуха помешения, в котором хранится. Поврежденные лампы и их осколки следует упаковать в герметичный контейнер для последуюшей сдачи на перерабатывающее предприятие. Необходимо проводить инструментальный контроль воздуха не реже 1 раза в 3 года.

Утилизация отходов IV и V классов опасности предполагается на полигонах ТБО. с которыми Заказчик должен на стадии эксплуатации предприятия заключить договор. Редкие и реликтовые виды растительности, виды, занесённые в Красную книгу РФ. отсутствуют.

3.2.2.8. Мероприятия по обеспечению пожарной безопасности

Функциональная пожарная опасность здания:

- Торговые помещения - Ф3.1;
- Многоквартирный жилой дом - Ф1.3.

Помещение уборочного инвентаря, расположенное на 1 -м этаже и помещение электрощитовой, расположенное в подвале относятся к классу Ф5 по функциональной пожарной опасности и имеют категорию по пожарной опасности B4.

Уровень ответственности здания - II.
Степень огнестойкости здания - II .
Класс конструктивной пожарной опасности здания- С0.
Здание жилого дома прямоугольное в плане с габаритными размерами в осях 21,4 м x 41,05 м. Высота здания - $26,9 \mathrm{~m}$ (подсчитано от уровня земли в самой низкой части до подоконника последнего этажа). Высота жилого этажа - 2,8 м. Высота нежилого этажа 3,6m.

Здание имеет 9 жилых этажей, нежилой этаж под торговлю, техническое подполье. Доступ в техническое подполье выполнен независимым непосредственно снаружи.

Общая площадь здания - $4400,2 \mathrm{~m} 2$.
Площадь застройки - 1035,9 м2.
Строительный объем - 21313,9м3.
Количество квартир - 72, в том числе: 1-комнатных - 36 шт., 2-х комнатных 36mt.

В радиусе 10 м нет зданий, граничащих с зданием котельной. Противопожарные расстояния между зданиями отражены в приложении (лист «Генеральный план»).

Наружное пожаротушение здания осуществляется оr пожарных гидрантов, находящихся в непосредственной близости от здания и дорог в количестве -2 шт.

Сеть наружного противопожарного водопровода проектируется кольцевой. Диаметр водопровода - 160 мм.

Расход на наружное пожаротушение принято $15 \mathrm{\pi} / \mathrm{c}$.
У гидрантов, а также по направлению движения к ним, установлены соответствующие указатели, четко нанесены цифры, указывающие расстояние до водоисточника.

Ширина проездов для пожарной техники предусматривается не менее 6 метров. Расстояние от внутреннего края подъезда до стены здания, не более 8 метров. Круговой проезд вокруг здания дает возможность пожарным автомобилям осуществлять пожаротушение любого участка здания.

Проезды и подъезды для пожарной техники.
Ширина проездов для пожарной техники предусматривается не менее 6 метров. Расстояние от внутреннего края подъезда до стены здания, не более 8 метров. Круговой проезд вокруг здания дает возможность пожарным автомобилям осуществлять пожаротушение любого участка здания.

В прюекте предусмотрены конструкции дорожных одежд.
Служебные двери на кровлю и в техподполье выполняются противопожарными 2го типа.

Входные наружные двери для входа в квартиры стальные по ГОСТ 31173-2003.
Внутренние двери по ГОСТ 6629-88.
Несущие конструкции покрытия встроенно-пристроенной части предусматривают предел огнестойкости не менее R 45 и класс пожарной опасности К0.

Стены и перегородки, отделяющие внеквартирные коридоры от друтих помещений предусмотрены с пределом огнестойкости не менее REI 45, K0.

Межквартирные несущие стены и перегородки предусмотрены с пределом огнестойкости не менее REI30 и классом пожарной опасности К0.

Технические, подвальные этажи разделяются противопожарными перегородками 1 го типа на отсеки площадью не более 500 m 2 .

Ограждения лоджий в здании выполняются из материалов группы НГ.
Огнестойкость узлов крепления строительньх конструкций предусматривается не менее предела самих конструкций. Узлы пересечения кабелями и трубопроводами ограждающих конструкций с нормируемой огнестойкостью и пожарной опасностью не снижают требуемых пожарно-технических показателей конструкший.

Ограждающие конструкции помещений машинных отделений лифтов, а также каналов, шахт и ниш для прокладки коммуникаций соответствуют требованиям. предъявляемым к противопожарным перегородкам 1-го типа и перекрытиям 3 -го типа. Предел огнестойкости ограждающих конструкций между шахтой лифта и машинным отделением лифта не нормируется.

Ограждающие конструкции лифтовых шахт с лифтовыми холлами соответствуют противопожарным перегородкам 1 -го типа и перекрытиям 3 -го типа, оборудованных противопожарными дверьми 1-го типа, автоматически закрывающие дверные проемы лифтовых холлов при пожаре.

Здание обеспечено необходимым количеством эвакуационных выходов. Двери эвакуационных выходов и другие двери на путях эвакуации предусматриваются открываюшимися по направлению выхода из здания, кроме дверей из квартир. На путях эвакуации не предусматривается размещение оборудования, выступающего из плоскости стен на высоте менее 2 метров, газопроводы и трубопроводы с горючими жидкостями, а также встроенные шкафы. Высота горизонтальных участков эвакуационных путей в свету предусматривается не менее $2-\mathrm{x}$ метров, ширина не менее 1,0 метра. Двери эвакуационньх выходов не имеют запоров, препятствующих их свободному открыванию изнутри без ключа.

На путях эвакуации не предусматривается перепадов высот.
Двери на путях эвакуации в лестничных клетках предусмотрены с присдособлениями для самозакрывания и с уплотнением в притворах.

Расстояние от двери наиболее удаленной квартиры до выхода непосредственно в лестничную клетку, не превышает 12 метров. Ширина коридора - не менее 1,4 м.

Число подъемов в одном лестничном марше или на перепаде уровней не менее 3 и не более 18. Применение лестниц с разной высотой и глубиной ступеней не допускается.

Высота ограждений лестниц, балконов, лоджий, кровли и в местах ппасных перепадов не менее $1,2 \mathrm{~m}$. Лестничные марши и площадки имеют ограждения с поручнями. Ограждения непрерывные, оборудованы поручнями и рассчитаны на восприятие горизонтальных нагрузок не менее $0,3 \mathrm{\kappa H} / \mathrm{m}$.

Лестничные клетки имеют двери с приспособлением для самозакрывания и с уплотнением в притворах, за исключением дверей, ведущих непосредственно наружу.

Характеристики устройств самозакрывания дверей, расположенных на путях эвакуации, соответствуют усилию для беспрепятственного открывания дверей человеком. относящимся к основному контингенту, находящемуся в здании (ребенок, инвалид и т. п.).

В лестничньгх клетках предусматриваются глухие двери.
В лифтовых холлах предусматриваются противопожарные двери. Допуускается не предусматривать двери в лифтовых холлах при условии установки противопожарных дверей в шахтах лифтов.

Квартиры обеспечены аварийным выходом. Выход предусмотрен на лоджию с глухим простенком не менее 1,2 метра от торца балкона (лоджии) до оконного проема (остекленной двери) или не менее 1,6 метра между остекленными проемами, выходящими на балкон (лоджию);

Выходы наружу из технического подполья располагаются не реже чем через 100 m и не сообщаются с лестничными клетками жилой части здания.

Стены и потолки эвакуационных путей в вестибюлях и лестничных клетках дома отделаны материалами класса пожарной опасности строительных материатов КМ2, а в общих коридорах класса КМЗ. Полы эвакуационных путей в вестибюлях дома отделаны материалами класса КМЗ, а в коридорах класса КМ4.

Лестничные клетки, за исключением лестничных клеток подвалов. имеют световые проемы площадью не менее 1,2 м2 в наружных стенах на каждом этаже.

В проектируемом здании, согласно требований СПЗ.13130.2009 предусмотрена звуковая система оповещения и управления эвакуацией людей 2 -го типа, посредством звуковых оповешателей «AC-10», установленных в общих коридорах здания.

Электрооборудование разработано на основании правил устройства электроустановок (ПУЭ), СП 31-110-2003. Опасность распространения горения в проектной документации уменьшена выбором кабелей с изоляцией и оболочкой, не распространяющей горение и с низким дымо- и газовыделением. При выполнении электропроводки пучками кабелей ВВГнг-LS, расстояние между соседними кабелями (пучками) должно быть не менее 0,6 наибольшего диаметра кабеля (пучка).

В качестве системы молниезащиты на объекте защиты используется существующая система металлических элементов водосточных труб в качестве молниеприёмников, металлические конструкции каркаса дома в качестве токоотводов, металлические конструкции фундамента в качестве заземлителей жилого дома, соответствующая СО 153-34.21.122-2003 «Инструкция по устройству молниезащиты сооружений и промышленных коммуникаций». Все токоотводы соединяются с заземлителем, выполненным из полосовой стали $40 \times 5 \mathrm{mм}$, проложенной на глубине 0,75 м от поверхности земли по периметру здания. Полосовой заземлитель необходимо объединить с заземлителем электроустановки повторного заземления нулевой жилы питающего кабеля. Все открытые части молниеприёмного устройства защищают от коррозии краской или битумом.

Проектом принято поквартирное отопление. Отопительные двухконтурные котлы с закрытой камерой сгорания располагаются на кухне и подсоединены к вертикальным дымоходам. Номещение кухни имеет окно с форточкой и вытяжной вентиляционный канал. Проектом предусматривается установка плит газовых 4 -х конфорочных. В помещении установки газового оборудования на вводе газопровода предусмотрены термозапорные клапаны для прекращения подачи газа при возникновении очага возгорания. Кран газовый перед счётчиком и на опуске к газовому оборудованию (кран устанавливается на расстоянии не менее 0,5 метра от оконных и дверных проёмов). Все трубопроводы в местах пересечения перекрытий, внутренних перегородок и стен, следует прокладывать в гильзах из негорючих материалов. Заделку зазоров и отверстий в местах прокладки трубопроводов следует выполнять негорючими материалами, обеспечивая нормируемый предел огнестойкости ограждений.

Доступ пожарных подразделений и подача средств пожаротушения к очагу пожара обеспечивается наличием дорог вдоль проектируемого здания. Доступ пожарных подразделений на кровлю здания обеспечивается через противопожарные двери на отметках машинных отделений лифтов.

Для подъема на кровлю машинного помещения предусмотрена металлическая стремянка СПЛ-1, закрепленная к стене машинного помещения.

Для обеспечения безопасности подразделений пожарной охраны при ликвидации пожара по периметру здания на кровле предусмотрен кирпичный парапет, высотой 1230 мм и составной парапет: кирпичный парапет, высотой 600 мм и легкое стањное. решетчатого типа, высотой 630 mm .

Для подачи средств пожаротушения между маршами лестниц лестничньх ктеток предусматривается зазор 0,12 м.

Ближайшая пожарная часть расположена на расстоянии 3 км 100 м от проектируемого объекта.

Запроектированы оптико-электронные пожарные извещатели типа ИП 212-43.
Система пожарной сигнализации жилого дома является автономной, предназначенной для раннего обнаружения и определения очага пожара в контролируемых помещениях и выдачи сигнапа "ТРЕВОГА" индивидуатьно каждым извешателем.

Извещатели имеют встроенную сирену мощностью 85 Д6.

Извещатели используются в индивидуальном режиме, без солидарного подключения. Извещатель устанавливается на потолке с помощью крепежной планки.

Извещатель питается от внутреннего источника питания - батарейки "Крона" и предназначен для непрерывной работы в течении длительного времени. Проверка работоспособности извещателей проводится не реже 1 раза в 6 месяцев.

Установка пожарных извещателей представлена в разделе "СС" настоящего проекта.

Общественные помещения оборудованы первичными средствами пожаротушения порошковыми огнетушителями марки ОП5(6) - АВСЕ-03 по ГОСТ Р 51057-2001 с массой порошка не менее 5 кг. Общее количество огнетушителей во встроенных помещениях в осях 7-10 1- го этажа -12 огнетушителей, во встроенных помещениях в осях 1-4 1-го этажа -12 огнетушителей. Общее количество огнетушителей во встроенных помещениях в осях 6-10 подвального этажа - 12 огнетушителей. Общее количество огнетушителей во встроенных помещениях в осях 1-6 подвального этажа -12 огнетушителей.

Кроме того, по два порошковых огнетушителя марки ОП5(б) - ABCE-03 установлены в общедомовых помещениях колясочной и кладовой уборочного инвентаря.

В помещениях электрощитовых необходимо установлено по 2 огнетушителя ОУ-5.
На сети хозяйственно-питьевого водопровода в каждой квартире запроектировано устройство для первичного пожаротушения, представляющее собой распылитель с вентилем и шлангом длиной 15 m , присоединенным к водопроводу (после квартирного водомера) через шаровой кран, для ликвидации очага возгорания согласно п. 7.4.5. СП54.13330.2011. Длина шланга обеспечивает возможность подачи воды в любую точку квартиры.

В каждой комнате квартир устанавливаются автономные дымовые пожарные извещатели с учетом закрытия площади одним извещателем не более 20 m 2 ИП $212-43 \mathrm{M}$, в проекте на поэтажных планах извещатели не показаны, размещение автономных оптикоэлектронньх дымовых пожарных извещателей в помещениях квартир.

3.2.2.9. Мероприятия по обеспечению доступа инвалидов

Проектом предусматривается выполнение следующих мероприятий с учетом требований СП 59.13330 .2012 "Доступность зданий и сооружений для маломобильных групп населения":

На территории двора, на площадках и тротуарах:
Высота бортового камня по краям пешеходных путей принята не менее $0,05 \mathrm{~m}$.
Высота бортового камня в местах пересечения тротуаров с проезжей частью принята в пределах $0,04 \mathrm{~m}$, уклон пандусов в этих местах около здания принят 10%. Продольный уклон тротуаров не превышает 5%.

На путях передвижения МГН запроектировано твердое асфальтобетонное покрытие. Все дворовые площадки имеют доступ для МГН. Предусмотрено устройство такти.ъных полос для информирования слабовидящих из плитки пириной $0,5 \mathrm{~m}$ за 0.8 m בо начата опасного участка изменения движения (перед пандусами, лестницами. поворотами тротуаров).

На автостоянке для жильцов дома предусмотрены 2 места для автотранспорта инвалидов, на автостоянке для помещений общественного назначения - 3 места. Количество мест для автотранспорта инвалидов составляет не менее 10% от общего количества стояночных мест, в том числе не менее 5% мест для автомобитей МГН. Размеры стояночных мест для автотранспорта МГН приняты $6 \mathrm{~m} \times 3.6 \mathrm{~m}$.

В жилой части дома:

Входы в жилую часть дома предусмотрены с уровня тротуара с перепадом уровней 0,15 м. Размеры плоцадок при входах на отм. $-0,010$ приняты не менее $2,50 \times 3,57 \mathrm{~m}$ (глубина на ширину).

Размеры тамбуров при входе в жилую часть дома приняты глубиной $1,90-4,46$ м и шириной $2,5 \mathrm{~m}$.

Для подъема МГН с отметки земли на отметку входов первого этажа предусмотрены наружные пандусы при входе в каждый подъезд жилого дома. Ширина пандусов принята $1,0 \mathrm{~m}$, уклон пандусов 5%. В тамбурах жилого дома на перепаде уровней $0,9 \mathrm{~m}$ предусмотрена установка подъемников для МГН.

Ширина внеквартирньх поэтажньх коридоров принята не менее 1,2 м.
Ширина входньх дверей на путях передвижения МГН принята 1,3 м в свету. Одна из створок принята шириной $0,9 \mathrm{~m}$. В полотнах входных дверей предусмотрено устройство остекленных смотровых панелей.

Для подъема МГН с отм. 0,000 на все этажи жилого дома в каждом подъезде запроектирован лифт с размером кабины $2,1 \times 1,1 \mathrm{~m}$, позволяющий транспортировать человека на носилках и использоваться для перевозки инвалида на коляеке. Ширина проема дверей лифта $1,2 \mathrm{~m}$.

Организация квартир для маломобильньх групп населения заданием на проектирование не предусмотрена.

В помещениях магазина:
Вход в магазин предусмотрен с уровня тротуара с перепадом уровней 0,15 м. Размеры площадки при входах на отм. $-0,010$ приняты не менее $1,80 \times 6,00 \mathrm{~m}$ (глубина на ширину).

Для подъема МГН с отметки земли на отметку входа предусмотрены наружные пандусы при входе. Ширина пандуса принята 1,0 м, уклон пандуса 5%.

В торговом зале магазина при входе для инвалидов по зрению установлена информационная мнемосхема (тактильная схема движения), отображающая информацию о помещениях в здании. Она размещается с правой стороны по ходу движения на расстоянии 3 m от входа. На основных путях движения предусмотрена тактильная направляющая полоса с высотой рисунка не более 0,025 м.

Во встроено-пристроенном помещении непродовольственного магазина на первом этаже здания предусмотрено устройство санузла для инвалидов (универсальной кабины) размером $2,2 \times 2,3$ м.

3.2.2.10. Требования к обеспечению безопасной эксплуатации объектов капитального строительства

Функциональное назначение здания - многоэтажный многоквартирных жилой дом.
Во всех жилых помещениях дома, помещениях, рассчитанньх на постоянное пребывание людей, проектом предусматривается естественное освешение. которое обеспечивается использованием оконных и витражных конструкции в качестве ограждающих.

Мероприятия по защите от шума и вибраций разрабатываются в строгом соответствии с рекомендациями, содержащимися в конструктивном разделе проекта. на основании чего подбирается состав конструкции стен, полов и потолков дэя конкретных помещений.

После завершения строительства и продажи (передаче) квартир соб́ственникам, техническую эксплуатацию и обслуживание будет осуществлять Управ.ляюпая компания.

Система обеспечения противопожарной защиты и безопасности включает следуюшие мероприятия:

- организационно-технические мероприятия, направленные на исключение возникновения пожароопасных ситуаций и скопления горючих материалов, появления сторонних источников зажигания»
- соблюдение нормативных противопожарных разрывов между зданиями и сооружениями, открытыми автостоянками;
- устройство противопожарных проездов, совмещённых с функциональными;
- устройство наружного пожаротушения от пожарных гидрантов на линии проектируемого противопожарного водопровода с расходом 20 л/с, размещённых на расстоянии до жилого дома не более 200 метров;
- выполнение объёмно- строительньх решений по жилому дому и применение строительных конструкций с соблюдением нормативньх степеней огнестойкости II с учётом огнезащиты деревянных и металлических конструкций строительной системы кровли;
- устройство системы заземления электрокабелей, устройство молниезащиты жилого дома;
- устройство в каждой квартире на линии хоз-питьевого водопровода отдельного крана для присоединения щланга с распылителем, для использования его в качестве первичного средства пожаротушения (необходимые напоры воды обеспечиваются насосной установкой в техподполье).

Соблюдение безопасных для здоровья человека условий проживания обеспечено запоженными в проект следующими техническими решениями и мероприятиями:

- в жилых квартирах выполнено полное инженерное обустройство (вентиляция. отопление, электроснабжение, газоснабжение, водоснабжение и водоотведение), обеспечивающее создание комфортных условий проживания;
- качество воды, используемой в качестве питьевой и для хозяйственно-бытовых нужд, обеспечивается по нормируемым показателям СанПин 2.1.4.1074-01;
- посадка жилого дома на генплане и ориентация фасадов выполнена с учётом требований по обеспечению инсоляции квартир (не менее 2 часов в день для жилых комнат по СанПин 2.2.1/2.1.1.1076);
- защита от шума в помещениях жилых квартир выполнена за счёт нормируемого размещения жилого дома от дорог и проездов, автостоянок, детских площадок; за счёт использования конструкций, изделий и материалов с высоким индексом изоляции шума. за счёт применения современного инженерного оборудования.

Мероприятия по обеспечению доступности маломобильных групा населения:

- предусмотрены парковочные места, предназначенные для размещения автотранспорта инвалидов;
- беспрепятственное передвижение МГН по участку;
- парковочные места для машин;
- вход в жилой дом оборудован пандусами.

Выполнен ряд мероприятий по соблюдению требований безопасного уровня воздействия объекта на окружающую среду.

Эксплуатация здания разрешается после оформления акта ввода объекта в эксплуатацию.

Эксплуатируемое здание используется только в соответствии со своим проектным назначением.

Строительные конструкции предохраняются оr разрушаюшего воздействия климатических факторов (дождя, снега, переменного увлажнения и высыхания, замораживания и оттаивания), для чего:

- содержатся в исправном состоянии ограждающие конструкции (стены. покрытия, цоколи, карнизы);
- содержатся в исправном состоянии устройства для отвода атмосферньх и тальх вод;
- не допускать скопления снега у стен здания, удаляя его на расстояние не менее 2 м от стен при наступлении оттепелей.

Техническое обслуживание зданий включает работы по контролю технического состояния, поддержанию работоспособности или исправности, наладке и регулировке, подготовке к сезонной эксплуатации зданий в целом и его элементов, и систем, а также по обеспечению санитарно-гигиенических требований к помещениям и прилегающей территории согласно перечню, приведенному в рекомендуемом приложении 4 (ВСН 5888(p).

Контроль за техническим состоянием здания осуществляется путем проведения систематических плановых и внеплановых осмотров с использованием современньх средств технической диагностики.

Общие осмотры проводятся два раза в год, весной и осенью. При весеннем осмотре проверяют готовность здания к эксплуатации в весенне-летний период, устанавливают объемы работ по подготовке к эксплуатации в осенне-зимний период.

При проведении частичных осмотров устраняются неисправности, которые могут быть устранены в течение времени, отводимого на осмотр.

Эксплуатация объекта обеспечивает жизнеобеспечение пользователей объекта, безопасность движения и перемещения людей, устанавливаемых действующим законодательством Российской Федерации.

Лицо, эксплуатирующее объект зарезервирует систему жизнеобеспечения объекта и своевременно проинформирует пользователей о предстоящем переключении объекта на резервную систему жизнеобеппечения.

Проектом предусмотрены оптимальные параметры элементов строительных конструкций, обеспечивающих безопасную эксплуатацию здания.

Для обеспечения беспрепятственного, безопасного и удобного передвижения людей по участку к доступному входу в здание, предусмотрено соблюдение оптимальных параметров.

В проектной документации предусмотрены меры по предотвращению наступления несчастных случаев и нанесения травм людям в результате взрывов.

В здании в процессе эксплуатации обеспечиваются безопасные условия для пребывания человека в здании по следующим показателям:

- качество воздуха в помещениях здания;
- качество воды, используемой в качестве питьевой и для хозяйственно-бытовых нужд;
- инсоляция и солнцезащита;
- естественное и искусственное освещение помещений;
- защита от шума в помещениях;
- микроклимат помещений;
- регулирование влажности на поверхности и внутри строительньх конструкий:
- уровень вибрации в помещениях здания;
- уровень напряженности электромагнитного поля в помещениях:
- уровень ионизирующего излучения в помещениях.
3.2.2.11. Перечень мероприятий по обеспечению соблюдения требований энергетической эффективности и требований оснащённости зданнй, стреений и сооружений приборами учета используемьх энергетическнх ресурсов

Общее количество квартир - 72.

Подвал - "холодный". На лестничной клетке и в лифтовьх холлах предусматривается установка настенного электроконвектора.

Покрытие кровли состоит из двух слоев рулонной гидроизоляции Унифлекс, минераловатного утеплителя Руф Баттс (теплопроводность $0,041 \mathrm{Bt/m} 3$ оС) толщиной $200 \mathrm{mм}$, одного слоя пароизоляции (ребероид), стяжки из керамзито-бетона и плиты перекрытия толщиной 220 мм.

Наружные стены проектируются из пористой керамики по ГОСТ $530-2007$, толщиной 630 мм, кладка:

- конструктивная толщина 510 мм (камень керамический поризованный) КМ-р (250x120×140);
- конструктивная толщина 120 мм (кирпич облицовочный силикатный) М100.

Цокольная часть наружных и внутренних стен - из бетонных блоков, толщиной 600 mм.

Окна - металлопластик с двойным стеклопакетом (сопротивление теплопередаче - B2, морозостойкие).

Двери входные проектируются из стальных блоков по ГОСТ 31173-2003.
Полы 1-го этажа (над подвалом) предусматриваются из крупноразмерной плитки и линолеума по утеплителю из пенополистирола TEPLEX (тип 35) (теплопроводность 0,029 $\mathrm{Bt} / \mathrm{m} 3^{\circ} \mathrm{C}$), толщиной $40 \mathrm{mм}$.

В проекте жилого здания предусматриваются следующие энергосберегающие мероприятия:

1. Применяемые в проекте наружные ограждаюцие конструкции имеют приведенные расчетные сопротивления теплопередаче Ro не ниже нормируемых значений Rreg, согласно требованиям, СНиП 23-02-2003.
2. В жилых помещениях для регулирования теплоотдачи отопительных радиаторов проектируется установка терморегуляторов Danfoss RA-N.
3. Теплоснабжение квартир предусматривается от навесных двухконтурных газовых теплогенераторов автоматизированных, размещаемых в кухне каждой из квартир (местные системы отопления и горячего водоснабжения), т.е. наружные тепловые сети отсутствуют, что приводит к значительной экономии тепла и топлива.

Расчетный удельный расход тепловой энергии на отопление здания 34,3 qdesh. кДж/(м2 ${ }^{\circ} \mathrm{C}$ сут).

Принятые объемно-планировочные решения здания, конструктивные решения ограждений и решения инженерных систем позволили выдержать удельный расхол тепловой энергии системами отопления в здании ниже нормативного по СНиП 23-022003, соответствует классу " A " «очень высокая» энергетической эффективности.

Все результаты расчетов сведены в энергетическом паспорте здания, запотненного ООО "ИнформТехСтрой".

3.2.2.12. Перечень мероприятий по обеспеченню санитарно-эпидемио.огнческой безопасности

Площадка под строительство объекта расположена на южной окраине города Александров в строяшемся микрорайоне "Южный".

На отведенном участке запроектированы многоэтажные жилые дома с поэтапной очередностью строительства, 1 -ый этап строительства - 10 -ти жилой дом со встроеннопристроенными нежилыми помещениями, трансформаторная подстанция и пристрюенное здание теплогенераторной. Проектируемый дом представлен лвухподъездньм житым домом, на первом этаже располагаются нежилые помещения. В каждом подъезде предусмотрены подъемники для доступности маломобильных групп населения и инватидов. К зданию

предусмотрен круговой проезд для пожарных машин. Главный въезд на площадку осуществляется с ул. Жулева.

Границами участка являются:
с северо-востока - 10 -и этажный жилой дом (построен);
с востока - 10 -и этажный жилой дом (проектируемый);
с юго-востока - школа (проектируемая);
с кга - 10 -и этажный жилой дом (проектируемый);
с запада - детский сад (проектируемый), 10 -и этажные жилые дома (проектируемые), 9 -и этажный жилой дом (построен).

Проектом предполагается строительство 10 -ти этажного жилого дома со встроенными нежилыми помещениями (магазином непродовольственных товаров). На 1ом этаже здания расположены нежилые встроено-пристроенные помещения.

А также входные группы этажей жилого дома.
На осталнных этажах здания располагаются жилые квартиры.
Проектируемое здание условно разделено на два строительных объёма.
Объём жилой части здания - девятиэтажный. И объём нежилой части здания -2 -х этажный, включающий в себя один этаж, предназначенный под торговые помешения, и один этаж (цокольньй) - техническое подполье.

Качество атмосферного воздуха, почвы, уровень ионизирующего излучения (гаммафон, радон) на земельном участке, отведённом под строительство, выполнены лабораторией, аккредитованной в установленном порядке. Результаты лабораторных исследований отвечают санитарным требованиям.

Расчеты рассеивания загрязняющих веществ в атмосфере представлены и показали, что максимальные концентрации загрязняющих веществ на границе жилой зоны не превышают предельно допустимых для населенньх мест.

Результаты акустического расчета показали, что звуковой уровень на прилегаюших территориях жилой застройки с учётом всех источников не превышает допустимые уровни согласно CH 2.2.4/2.1.8.562-96.

Проектируемое здание располагается на участке строительства таким образом, что обеспечивает продолжительность инсоляции прилегающей территории согласно нормам. установленным СанПиН 2.1.2.2645-10 "Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях" и СанПиН 2.2.1/2.1.1.1076"Гигиенические требования к инсоляции и солнцезащите помещений жилых и общественных зданий и территорий".

Все основные помещения с постоянным пребыванием людей имеют естественное освецение через окна. Естественное освещение имеют жилые комнаты и кухни. Естественная освещенность жилых комнат и кухонь-соответствует требованиям СанПиН 2.2.1./2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий».

Планировка, площади, инженерное обеспечение, соответствует требованиям СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживання в житых зданиях и помещениях».

Водоснабжение дома осуществляется от городских сетей. качество воды горводопровода соответствует требованиям СанПиН 2.1.4.1074-01 «Питвевая вода. Гигиенические требования к качеству воды централизованных скстем шитьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению оезопасности систем горячего водоснабжения».

Водоотведение хозяйственно-бытовых и производственных сточных вод будет осуществляться в существующий колодец городской канализационной сети. согласно техническим условиям на водоотведение

Предусмотрена система внутреннего водостока с отведением воды с кровли здания через водосточные воронки и сбросом на отмостку. Параметры микроклимата и воздухообмены в помещениях здания приняты согласно ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», СП 54.13330 .2012 «Здания жилые многоквартирные

В проекте запроектирована поквартирная система отопления с нижней разводкой. Отопительный котел размещен на кухне каждой квартиры. Дымовые газы от котла удаляются через металлическую коаксиальную трубу и далее через коллективный дымоход из нержавеющей стали с теплоизоляцией и покрывным слоем из оцинкованной стали. Для жильх квартир предусмотрены системы выттжной вентиляции с естественным побуждением.

3.2.2.13. Сведения о нормативной периодичности выполнения работ по капитальному ремонту многоквартирного дома, необходимых для обеспечения безопасной зксплуатации такого дома, об объеме и о составе указанньх работ

Капитальному ремонту подлежит только общее имущество многоквартирного дома; объектами капитального ремонта из состава общего имущества могут бьть только те конструктивные элементы и инженерные системы, которые указаны в части 3 статьи 15 Федерального Закона № 185-ФЗ; объём и состав ремонтных работ по каждому из установленных Федеральным законом № 185 -ФЗ видов работ должен быть не меньше объемов текущего ремонта и не больше того, который рассматривается как реконструкция.

Общим имуществом собственников помещений в многоквартирном доме являются части многоквартирного дома, имеющие вспомогательное, обеспечивающее значение и являющиеся объектами обцей собственности.

Перечень частей многоквартирного дома, распределяется по следуюшим блокам:
Первый блок - помещения общего пользования в многоквартирном доме: помещения, не являющиеся частями квартир и предназначенные для обслуживания более одного помещения в этом многоквартирном доме, в том числе, межквартириые лестничные площадки; лестницы; лифтовые и иные шахты (как помещения, а не как оборудование): коридоры; технические этажи и технические подвалы, в которых имеются инженерные коммуникации, иное, обслуживающее более одного жилого и (или) нежилого помещения в многоквартирном доме, оборудование (включая помещения котельных, бойлерньх. элеваторных узлов и другого инженерного оборудования).

Второй блок - крыши как самостоятельный элемент общего имущества.
Третий блок - ограждаюцие несущие конструкции многоквартирного дома включая фундаменты, несущие стены, плиты перекрытий, балконные и иные птиты. несущие колонны и иные ограждающие несущие конструкции.

Четвертый блок - ограждаюшие ненесущие конструкции многокварпирного дома.
К ограждающим ненесушим конструкциям многоквартирного дома относятся: окна и двери в помещениях общего пользования; ограждения кровли. балконов. лоджн̆ и веранд; перегородки (стены), отделяющие жилое помещение от друтих помещений и утицы (за исключением тех, которые относятся к ограждающим несушим консгрукикям); наружные входные двери в помещениях обшего пользования.

Пятый блок - механическое, электрическое, санитарно-техннческое и иное оборудование, находящееся в многоквартирном доме за пределами ити внутри помещений и обслуживающее более одного жилого помещения (квартиры) и (в.т) нежилого помещения. К объектам этого блока общего имущества могут быть отнесены. например: внутридомовые инженерные системы холодного и горячего водоснабжения и водоотведения; газоснабжения, отопления, электроснаӧжения. оборудование мусоропроводов; лифтовое оборудование; системы вентиляшви и кондишионирования;

дымоходы и газоходы: печи и очаги в помещениях общего пользования; оборудование и средства пожаротушения и т. п.

К внутридомовьм инженерным системам холодного и горячего водоснабжения, отопления и газоснабжения в составе общего имущества отнесены: стояки, ответвления от стояков до первого отключающего устройства, расположенного на ответвлениях от стояков, указанные отключающие устройства, коллективные (общедомовые) приборы учета холодной и горячей воды и тепловой энергии, до первых запорнорегулировочных кранов на отводах внутриквартирной разводки от стояков, а также механического, электрического, санитарно-технического и иного оборудования, расположенного на этих сетях.

К внутридомовым системам электроснабжения относятся: вводные пшкафы, вводнораспределительные устройства; аппаратура защиты, контроля и управления; коллективные (общедомовые) приборы учета электрической энергии; этажные щитки и шкафы; осветительные установки помещений общего пользования в многоквартирном доме; электрические установки систем дымоудаления, систем автоматической пожарной сигнализации, внутреннего противопожарного водопровода, грузовых, пассажирских и пожарных лифтов, автоматически запирающихся устройств дверей в подъезды многоквартирного дома; сети (кабели) от внешней границы, до индивидуальных, общих (квартирных) приборов учета и другое электрическое оборудование на этих сетях.

Внешней границей сетей электро-, тепло-, водоснабжения и водоотведения, информационно-телекоммуникационных сетей, входящих в состав общего имущества, если иное не установлено законодательством Российской Федерации, является внешняя граница стены многоквартирного дома, а границей эксплуатационной ответственности при наличии коллективного (общедомового) прибора учета соответствующего коммунального ресурса, если иное не установлено соглашением собственников помещений с исполнителем коммунальных услуг или ресурсоснабжающей орғанизацией, является место соединения коллективного (общедомового) прибора учета с соответствующей инженерной сетью. входящей в многоквартирный дом.

Состав общего имущества в соответствии с Правилами содержания общего имущества в каждом многоквартирном доме определяется:
a) собственниками помещений - в целях выполнения обязанности по содержанию общего имущества;
б) органами государственной власти - в целях контроля за содержанием общего имущества;
в) органами местного самоуправления - в целях подготовки и проведения открытого конкурса по отбору управляющей организации в соответствии с частью 4 статьи 161 Жилишного кодекса Российской Федерации;
г) застройщиком (или иным лицом по заданию застройщика) в составе Инструкции по эксплуатации многоквартирного дома (далее - Инструкция по эксштуатации). разрабатываемой в соответствии с приказом Министерства регионатьного развития Российской Федерации от 1 июня 2007 года № 45 «Об утверждении По.ожения о разработке, передаче, пользовании и хранении инструкции по эксптуатации многоквартирного дома» на основании рекомендаций проектной организации. в составе проектной документации на строительство, реконструкцию. капитатьный ремонт многоквартирного дома.

Все объекты общего имущества многоквартирного дома и их части. как и объекты и части многоквартирного дома, не входящие в состав общего имушества в процессе экспуатации подвергаются износу вследствие естественного старения материалов, из которых они изготовлены, силовых нагрузок (несушие конструкшии) .тибо вследствие влияния геодезических и природно-климатических факторов. а также условий использования и уровня надлежащего содержания объектов оӧщего имушества и его

частей, в том числе своевременности устранения возникающих неисправностей путём проведения ремонтов.

Сведения о составе и состоянии общего имущества отражаются в технической документации на многоквартирный дом, которая включает в себя:
a) документы технического учета жилищного фонда, содержащие сведения о состоянии общего имушества;
б) документы (акты) о приемке результатов работ;
в) акты осмотра. проверки состояния (испытания) инженерных коммуникаций, приборов учета. механического, электрического, санитарно-технического и иного оборудования, обслуживающего более одного помещения в многоквартирном доме, конструктивных частей многоквартирного дома (крыши, ограждающих несущих и ненесущих конструкций многоквартирного дома, объектов, расположенных на земельном участке, и других частей общего имущества) на соответствие их эксплуатационных качеств установленным требованиям.

Система ремонтов многоквартирных домов предусматривает проведение через определенные промежутки времени регламентированных ремонтов и ремонтнореконструктивных преобразований. Межремонтные сроки и примерные объёмы ремонтов и ремонтно-реконструктивных преобразований для цели долгосрочного планирования рекомендуется принимать в соответствии с $\mathrm{BCH} 58-88(\mathrm{p})$, а при среднесрочном и краткосрочном планировании - уточняются на основании технического состояния, архитектурно-планировочньх и конструктивных особенностей многоквартирных домов.

Капитальный ремонт зданий - замена или восстановление отдельных частей или целых конструкций (за исключением полной замены основных конструкций, срок которых определяет срок службы многоквартирного дома в целом) и инженерно-технического оборудования зданий в связи с их физическим износом и разрушением, а также устранение, в необходимых случаях, последствий функционального (морального) износа конструкций и проведения работ по повышению уровня внутреннего благоустройства, т. е. проведение модернизации зданий. При капитальном ремонте ликвидируется физический (частично) и функциональный (частично или полностью) износ зданий. Капитальный ремонт предусматривает замену одной, нескольких или всех систем инженерного оборудования, установку коллективных (общедомовых) приборов учета потребления ресурсов и узлов управления (тепловой энергии, горячей и холодной воды, электрической энергии, газа).а также приведение в исправное состояние всех конструктивных элементов дома.

Капитальный ремонт подразделяется на комплексный капитальньй ремонт и выборочный.
a) Комплексный капитальный ремонт - это ремонт с заменой конструктивных элементов и инженерного оборудования и их модернизацией. Он включает работы. охватывающие всё здание в целом или его отдельные секции, при котором возмешается их физический и функциональный износ.
б) Выборочный капитальный ремонт - это ремонт с полной или частичной заменой отдельных конструктивных элементов зданий и сооружений или оборудования. направленные на полное возмещение их физического и частично функционатьного износа.

Отнесение к виду калитального ремонта зависит от технического состояния зданий, назначенных на ремонт, а также качества их планировки и степени внутреннего благоустройства.

При проведении ремонта следует применять материаты. ойеспечиваюцие нормативный срок службы ремонтируемых конструкций и систем. Состав видов и подвидов работ должен быть таким, чтобы после проведения капитањного ремонта многоквартирный дом полностью удовлетворял всем эксплуатациовным треб̄ования.

Выборочный капитальный ремонт проводится исходя из лехннческого состояния отдельных конструкций и инженерных систем путём их полной и.и частичной замены.

Перечень дополнительных работ, производимых при капитальном ремонте здания и объектов

1. Обследование зданий (включая сплопное обследование жилищного фонда) и изготовление проектно-сметной документации (независимо от периода проведения ремонтных работ).
2. Перепланировка квартир, не вызывающая изменение основных техникоэкономических показателей здания; увеличение количества и качества услуг; оборудование в квартирах, кухонь и санитарных узлов; расширения жилой площади за счет подсобных помещений; улучшение инсоляции жилых помещений; ликвидация темных кухонь и входов в квартиры через кухни с устройством при необходимости встроенных или пристроенных помещений для лестничных клеток, санитарных узлов или кухонь, а также балконов, лоджий и эркеров; замена теплопроводов и тепловых пунктов; оборудование системами холодного и горячего водоснабжения, канализации, с присоединением к существующим магистральным сетям при расстоянии от ввода до точки подключения к магистралям до 150 мм; водоподкачек, бойлерньх; устройство лифтов; перевод существующей сети электроснабжения на повышенное напряжение; устройство теле- и радиоантенн коллективного пользования, подключение к телефонной и радиотрансляционной сетям; установка домофонов, электрических замков; устройство систем противопожарной автоматики и дымоудаления; тепловых сетей, теплопунктов и инженерного оборудования жилых домов; благоустройство дворовых территорий (замощение, асфальтирование, озеленение, устройство ограждений, дровяных сараев); оборудование детских, спортивньх (кроме стадионов) и хозяйственно-бытовых площадок; разборка аварийных домов; изменение конструкции крыш; оборудование чердачных помещений жилых и нежилых зданий под эксплуатируемые.
3. Утепление и шумозащита зданий.
4. Замена изношенных элементов внутриквартальных инженерных сетей.
5. Ремонт встроенных помещений в зданиях.
6. Экспертиза проектно-сметной документации.
7. Авторский надзор проектньх организаций.
8. Технический надзор.

Сведения об оперативных изменениях, внесенных заявителем в рассматриваемые разделы проектной документации в процессе проведения экспертизы.

Раздел «Схема планировочной организации земельного участка»

1. Указаны технико-экономические показатели 1 -го этапа строительства;
2. Ппредоставлен расчет количества мест на автостоянках, указаны назначение стоянок: гостевые, для кратковременного хранения автотранспорта жильцов дома. гостевые для посетителей магазина;
3. На стоянках предусмотрены места для автотранспорта инвалидов. указаны размеры стояночных мест для МГН;
4. Указаны места устройства съездов для МГН с тротуаров на проезжую часть:
5. Откорректировано расстояние от проектируемой площадки для мусороконтейнеров до детской площадки, после корректировки расстояние составляет более 20 m :
6. Откорректированы уклоны проездов на участке вдоль оси 1 проектируемого дома с учетом отвода воды по покрытиям проездов на улично-дорожную сеть

Раздел «Архитектурные репения»

1. В техподполье на отм. -2,550 предусмотрено устройство вентитяционных канатов;
2. Техподполье жилого дома разделено противопожарными перегоролками на отсеки;
3. В каждом отсеке техподполья жилого дома предусмотрено два окна размером $1,5 \mathrm{x}$ 1,44 м с приямками;
4. Предусмотрено устройство двойных тамбуров при входах в секции жилого дома;
5. Предусмотрено устройство кладовых уборочного инвентаря в жилом доме;
6. Предусмотрено устройство загрузочных помещений в магазине;
7. Указаны категории помещений по взрывопожарной и пожарной опасности помещений для хранения уборочного инвентаря и теплогенераторной, предусмотрено противопожарное заполнение дверных проемов;
8. Предусмотрено устройство пандусов при входах в жилую часть дома и помещения общественного назначения на перепадах уровней 0,15 м;
9. На чертеже разреза показана конструкция перекрытия над техподпольем;
10. На цветовых решениях указана отделка цоколя здания;

Раздел «Конструктивные и объемно-планировочные решения».

1. В соответствии с ФЗ №145 статья II п. 16 и п. 17 предоставлено положительное заключение экспертизы результатов инженерно-геологических изысканий и предоставлены расчеты ленточных фундаментов на естественном основании с указанием схемы осадок и увязкой разности этих осадок.
2. Армирование каменной кладки и арматурные пояса выполнено в соответствии с п. 5.4 СП 15.13330.2012.
3. В стенах выполнены арматурные пояса согласно п. 7.20 и 7.21 "Пособие к СНиП II-22-81".

Раздел «Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений». Подраздел 1 «Система электроснабжения».

1. Текстовая часть проектной документации оформлена согласно постановлению 87 .
2. Представлены планы и схемы размещения электрооборудования.
3. Откорректирован расчет общей мощности.

Раздел «Сведения об инженерном оборудовании, о сетях инженерно-технического обеспечения, перечень инженерно-технических мероприятий, содержание технологических решений».

Подраздел 4 «Отопление, вентиляция и кондиционирование воздуха, тепловые сети»

1. Откорректированы нормативные документы согласно ПП РФ № 1521 от 26.12.2014 г.
2. Откорректирована температуру наружного воздуха в холодный период года в соответствии с СП 131.13130.2012, табл. 3.1.
3. Продолжительность отопительного периода и средняя температура за отопительный период приняты в соответствии с табл. 3.1 СП 131.13130.2012.
4. Расчеты откорректированы в соответствии с СП 131.13130.2012.
5. Текстовая часть оформлена в соответствии с п. 19 ПП РФ № 87.

Подразделы 5.2 и 5.3: «Система водоснабжения» и «Система водоотведения»

1. Подраздел дополнен заданием на проектирование.
2. В текстовой части проектной документации указан срок службы трубопроводов (пункт 7.1.2 СП 30.13330.2012).
3. Согласно требованиям пункта 5.4.7 СП 30.13330 .2012 в текстовой части указана герметизация вводов трубопроводов в здание.

Подраздел 5.6 «Система газоснабжения».

1. Проектная документация дополнена техническими условиями, заданием на проектирование (пункт 10-б Положения о составе разделов проектной документации и требования к их содержанию утв. постановлением Правительства РФ от 16 февраля 2008 г. № 87.
2. Проектная документация дополнена текстовой частью (пункт 21 Положения о составе разделов проектной документации и требования к их содержанию утв. постановлением Правительства РФ от 16 февраля 2008 г. № 87.
3. ИФС на стояке установлена после отключающего устройства.
4. Откорректирована Серия 5.905-8 отменена и заменена 5.905-18.05.
5. Выполнены требования пункта 6.5 .8 СП 60.13330 .2012 при прокладке газопровода и установки газового счетчика в лоджии, при ее остеклении собственником.

Раздел «Мероприятия по обеспечению пожарной безопасности»

1. Текстовая и графическая части раздела «Мероприятия по обеспечению пожарной безопасности» откорректированы в соответствии требований п. 26 «Положение о составе разделов проектной документации и требования к их содержанию», требований технических регламентов и нормативных документов по пожарной безопасности, измененных проектных решений.

Раздел «Мероприятия по обеспечению доступа инвалидов»

1. Указаны решения по обеспечению доступа инвалидов в помещения магазина.
2. Указаны съезды с тротуаров при пересечении проезжей части.
3. Указаны габариты стояночных мест для автомобилей МГН, предоставлен расчет количества мест для автотранспорта инвалидов для жителей дома и для посетителей магазина.
4. Представлены решения по устройству тактильных элементов мощения на путях движения инвалидов по территории жилого дома и при входе в магазин.
5. Указаны места установки информационных табло (мнемосхем) при входе в магазин.
6. Предусмотрено устройство пандусов при входах в жилую часть дома и в магазин, предусмотрены подъемники на перепадах уровней в вестибюлях жилого дома.
7. Предусмотрено устройство универсальной кабины (санузла) для инвалидов.

Раздел «Перечень мероприятий по обеспечению соблюдения требований энергетической эффективности и требований оснащённости зданий, строений и сооружений приборами учета используемых энергетических ресурсов»

1. Откорректированы нормативные документы согласно ПП РФ № 1521 от 26.12.2014 г.
2. Откорректирована температура наружного воздуха в холодный период года в соответствии с СП 131.13130.2012, табл. 3.1.
3. Продолжительность отопительного периода и средняя температура за отопительный период приняты в соответствии с табл. 3.1 СП 131.13130.2012.
4. Расчеты откорректированы в соответствии с СП 131.13130.2012 (в том числе энергопаспорт).
5. Представлена графическая часть (п.27(1) г ПП РФ № 87).
6. Выполнены требования п.27(1) а - о показателях удельной величины расхода энергетических ресурсов, требования к инженерно-техническим решениям (электроснабжение, водоснабжение и др.).
7. Выполнены требования п.27(1) а - о требованиях оснащенности приборами учета энергетических ресурсов.

Раздел «Санитарно-эпидемиологическая безопасность»

1. Представлено описание мероприятий по защите объекта от грызунов в п. 7 пояснительной записки.

4. Выводы по результатам рассмотрения

4.1. Выводы о соответствии результатов инженерных изысканий

Представленные результаты инженерных изысканий по объекту «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)» в соответствии с техническими заданиями в объемах, необходимых и достаточных для принятия проектных решений.

4.2.Выводы в отношении технической части проектной документации

Техническая часть проектной документации объекта: «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)» соответствует результатам инженерных изысканий и соответствует техническим регламентам, градостроительным регламентам, градостроительному плану земельного участка, национальным стандартам, заданию на проектирование.

4.3. Общие выводы

Проектная документация по объекту «Многоквартирный 10 - этажный жилой дом со встроенно-пристроенными нежилыми помещениями по адресу: Владимирская область, г. Александров, ул. Жулева (1-ый этап строительства)» соответствует техническим регламентам, градостроительным регламентам, градостроительному плану земельного участка, национальным стандартам, заданию на проектирование и техническим заданиям на инженерные изыскания.

Эксперт \qquad И.В. Рябушев

Квалификационный аттестат № ГС-Э-3-2-1626
2.1.1. Схемы планировочной организации земельных участков

Раздел 3.2.2.2 Заключения
Квалификационный аттестат № МС-Э-47-2-6372
по направлению: организация строительства. Раздел 3.2.2.6. Заключения
Эксперт \qquad А.Ю. Хопров

Квалификационный аттестат № MC-Э-23-2-5686
2.1.2. Объемно-планировочные и архитектурные решения

Разделы 3.2.2.3., 3.2.2.9, 3.2.2.11, 3.2.2.13. Заключения
Эксперт PQ
Квалификационный аттестат № МС-Э-5-2-6846
2.1.3. Конструктивные решения. Раздел 3.2.2.4. Заключения
Эксперт \qquad Л.М. Ларкина
Квалификационный аттестат № ГС-Э-39-2-1636
2.3. Электроснабжение, связь, сигнализация, системы автоматизации
Раздел 3.2.2.5.1. Заключения

Эксперт \qquad В.Я. Ермолин

Квалификационный аттестат № MC-Э-97-2-4890
2.2. Теплогазоснабжение, водоснабжение, водоотведение, канализация, вентиляция и кондиционирование
Разделы 3.2.2.5.2-3.2.2.5.4, 3.2.2.5.6,3.2.2 10. 3.2.2.11 Заключения
Эксперт \qquad los Ю. М. Фалеткин

Квалификационный аттестат № MP-Э-19-2-0609
2.3.2. Системы автоматизации, связи и сигнализации

Раздел 3.2.2.5.5. Заключения
Эксперт \qquad Ю. А. Кудинова

Квалификационный аттестає Nof C-Э-6-2-0188
по направлению: системы газоснабжения. Раздел 3.2.2.5.6. Заключения
Эксперт \qquad О. Е. Заугольная

Квалификационный аттестат № ГС-Э-2ด-2-1149
2.4. Охрана окружающей среды, санитарно-эпидемиологическая безопасность

Раздел 3.2.2.7, 3.2.2.10, 3.2.2. 12. Закдюччения
Эксперт \qquad С. Г. Бычков

Квалификационный аттестат № МР-Э-8-2-0335
2.5. Пожарная безопасность Раздел 3.2.7. Заключения

СВИДЕТЕЛЬСТВО ОБ АККРЕДИТАЦИИ

на право проведения негосударственной экспертизы проектной документации и (или) негосударственной экспертизы результатов инженерных изысканий

$$
\text { No } \frac{0000333}{\text { (учетвыні номер блаика) }}
$$

Настоящим удостоверяется, что
Общество с ограниченной ответственностью «Центр экспертиз»
(познюе и (в сяучае, если иместея)
(ООО <Центр экспертиз)

ОГРН 5137746166102

место нахождения
115114 , г. Москва, 2-й павелецкий проезд, 12 а

- (аурес юориднческого лмпа)

аккредитовано (а) на право проведения негосударственной экспертизы проектной документапии
(внд негосудярственной зксисргизы, в отноменин которого получена ақкредитаиия)
СРОК ДЕЙСТВИЯ СВИДЕТЕЛЬСТВА ОБ АККРЕДИТАЦИИ с13 февраля 2014 г. по 13 февраля 2019 г.
Руководитель (заместитель руководитеня) , М.А. Якутова органа по аккредитации
(нодиись)

СВИДЕТЕЛЬСТВО ОБ АККРЕДИТАЦИИ

 на право проведения негосударственной экспертизы проектной документации и (или) негосударственной экспертизы результатов инженерных изысканий

место нахождения \qquad 115114 , г Москва, Павелецкий 2 -й проезд, д. 12 А.
аккредитовано (а) на право проведения негосударственной экспертизы \qquad результатов инженерных изысканий

[^1]19 марта 2015 г. no

19 марта 2020 г.
М.А. Якутова

Руководитель (заместитель Руководитемя)

Пронумеровано, прошнуровано и скреплено печатью

[^0]: 3.2.2.5. Сведения об инженерном оборудовании, о сетвх инженерно-технического обесцечения, перечень инженерно-техннческих мероприятий, содержанне технологических репений

[^1]: ОБ АККРЕДИТАЦИИ С

